Appendices

Appendix A. Reference

A.0. Overview

A.1. Basic concepts

Definitions of entailment and related ideas

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 25 Aug 2009

A.1. Basic concepts

Concept	Negative definition	Positive definition
φ is entailed by $Γ$ $Γ ⊨ φ$	There is no logically possible world in which ϕ is false while all members of Γ are true.	ϕ is true in every logically possible world in which all members of Γ are true.
φ and $ψ$ are (logically) equivalent $φ ≃ ψ$	There is no logically possible world in which ϕ and ψ have different truth values.	ϕ and ψ have the same truth value as each other in every logically possible world.
φ is a tautology $\models \varphi$ $(or \top \models \varphi)$	There is no logically possible world in which ϕ is false.	φ is true in every logically possible world.
$φ$ is inconsistent with $Γ$ $Γ$, $φ \models$ $(or$ $Γ$, $φ \models \bot)$	There is no logically possible world in which ϕ is true while all members of Γ are true.	ϕ is false in every logically possible world in which all members of Γ are true.
Γ is inconsistent $\Gamma \vDash (or \Gamma \vDash \bot)$	There is no logically possible world in which all members of Γ are true.	In every logically possible world, at least one member of Γ is false.
φ is absurd $\varphi \vDash (or \varphi \vDash \bot)$	There is no logically possible world in which ϕ is true.	φ is false in every logically possible world.
$\begin{array}{c} \Sigma \text{ is} \\ \textit{rendered} \\ \textit{exhaustive} \\ \textit{by } \Gamma \\ \Gamma \vDash \Sigma \end{array}$	There is no logically possible world in which all members of Σ are false while all members of Γ are true.	At least one member of Σ is true in each logically possible world in which all members of Γ are true

Glen Helman 25 Aug 2009

A.2. Logical forms

Forms for which there is symbolic notation

	Symbolic notation	n English notation or English reading		
Negation	¬ φ	not φ		
Conjunction	φΛψ	both ϕ and ψ	$(\phi \text{ and } \psi)$	
Disjunction	φνψ	either φ or ψ	(φ or ψ)	
The conditional	$\phi o \psi$	if φ then ψ	(φ implies ψ)	
	$\psi \leftarrow \phi$	yes ψ if φ	(ψ if φ)	
Identity	$\tau = \upsilon$	τ is υ		
Predication	$\theta \tau_1 \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ - can be read (series) $\tau_1,,$	
Compound term	$\gamma \tau_1 \tau_n$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	on τ_n (using the expression	
Predicate abstract	$[\varphi]_{\mathbf{x}_1\mathbf{x}_n}$	what φ says of x_1x_n	ı	
Functor abstract	$\left[au ight]_{\mathrm{X}_{1}\mathrm{X}_{n}}$	τ for $\mathbf{x}_1\mathbf{x}_n$		
Universal	$\forall x \ \theta x$	forall $x \theta x$		
quantification		everything, x, is such that θx		
Restricted	(∀x: ρx) θx	forall x st ρx θx		
universal		everything, x, such	that ρx is such that θx	
Existential	∃х Өх	for some $x \theta x$		
quantification something, x , is such that θx			h that θx	
Restricted	(∃x: ρx) θx	for some x st ρx θx		
existential		something, x, such that ρx is such that θx		
Definite	lx ρx	the x st ρx		
description		the thing, x , such the	nat ρx	

Some paraphrases of other forms

Truth-functional compounds

	1 rutn-Junctional compounas
neither φ nor ψ	$\neg \ (\phi \lor \psi) \\ \neg \ \phi \land \neg \ \psi$
ψ only if φ	¬ ψ ← ¬ φ
ψ unless φ	ψ ← ¬ φ
	Generalizations
All Cs are such that (they)	(∀x: x is a C) x
No Cs are such that (they)	(∀x: x is a C) ¬ x
Only Cs are such that (they)	(∀x: ¬ x is a C) ¬ x
with: among Bs	add to the restriction: $x ext{ is } a ext{ B}$
except Es	¬ x is an E
other than τ	$\neg x = \tau$
	Numerical quantifier phrases
At least 1 C is such that (it)	(∃x: x is a C) x
At least 2 Cs are such that (they)	$(\exists x: x \text{ is a C}) (\exists y: y \text{ is a C } \land \neg y = x) (\dots x \dots \land \dots y \dots)$
Exactly 1 C is such that (it)	$(\exists x: x \text{ is a } C) (\dots x \dots \land (\forall y: y \text{ is a } C \land \neg y = x) \neg \dots y \dots)$ or $(\exists x: x \text{ is a } C) (\dots x \dots \land (\forall y: y \text{ is a } C \land \dots y \dots) x = y)$
Definit	te descriptions (on Russell's analysis)
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y \text{ is a } C) \dots x \dots$ or
	$(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C) x = y) \dots x \dots$

Glen Helman 16 Oct 2009

A.3. Truth tables

Taut	ology	Absi	ırdity	Negation		
$\frac{T}{T}$		_	<u>⊥</u> F	$\begin{array}{c c} \phi & \neg & \phi \\ \hline T & F \\ F & T \end{array}$		
Conjunction		Disju	nction	Conditiona		
φψ	φΛψ	φψ	φ∨ψ	φψ	$\phi \rightarrow \psi$	
TT	T	TT	T	TT	T	
TF	F	ΤF	T	TF	F	
FT	F	FΤ	T	FT	T	
FF	F	FF	F	FF	T	

Glen Helman 25 Aug 2009

A.4. Derivation rules

Basic system

			•				
Rules for developing gaps				Rules for closing gaps			
	for resources	for goals		when	to close		rule
atomic		ΙP	co	-aliases	resources	goal	
sentence					φ	φ	QED
negation ¬ φ	CR (if φ not atomic & goal is ⊥)	RAA			ϕ and \neg ϕ	Τ	Nc
conjunction	Ext	Cnj				Т	ENV
φΛψ					Т		EFQ
$\begin{array}{c} \text{disjunction} \\ \phi \lor \psi \end{array}$	PC	PE		τ—υ		$\tau = \upsilon$	EC
conditional $\phi \rightarrow \psi$	RC (if goal is ⊥)	СР		τ—υ	$\neg \tau = \upsilon$	Т	DC
	(II gotti is ±)		τ_1 — υ_1	$,,\tau_n$ — υ_n	$P\tau_1\tau_n$	Pv_1v_n	QED=
universal ∀x θx	<u>UI</u>	UG	$\overline{\tau_1}$ — v_1	$,,\tau_n$ — υ_n	$ \begin{array}{c} P\tau_1\tau_n \\ \neg \ P\upsilon_1\upsilon_n \end{array} $	Т	Nc=
existential ∃x θx	PCh	NcP		Detachn	nent rules (o	ptional)	
⊒A OA				require	ed resources	rule	
				main	auxiliar	y	
				$\phi \rightarrow \psi$	φ	MPP	
a addition, if the conditions for applying a rule re met except for differences between co- iases, then the rule can be applied and is otated by adding "="; QED= and Nc= are tamples of this.				$\Psi \rightarrow \Psi$		MTT	
				φ ∨ ψ	¬± φ or ¬	± ψ MTP	<u>-</u>
				¬ (φ ∧ ψ)	φorψ	MPT	-
ampies of this.							

Additional rules (not guaranteed to be progressive)

Attachment ru	les	Rule for lem	mas
added resource	rule	prerequisite	rule
φΛψ	Adj	the goal is ⊥	LFR
$\phi \to \psi$	Wk		
$\phi \vee \psi$	Wk		
$\neg (\phi \land \psi)$	Wk		
$\tau = v$	CE	•	
θv_1v_n	Cng	•	
∃х Өх	EG	•	

Diagrams

Rules from chapter 2

Extraction (Ext)

Conjunction (Cnj)

Quod Erat Demonstrandum (QED)

Ex Nihilo Verum (ENV)

Ex Falso Quodlibet (EFQ)

Adjunction (Adj)

Lemma for Reductio (LFR)

Rules from chapter 3

Indirect Proof (IP)

Completing the Reductio (CR)

Reductio ad Absurdum (RAA)

Non-contradiction (Nc)

Rules from chapter 4

Proof by Cases (PC)

Proof of Exhaustion (PE)

Modus Tollendo Ponens (MTP)

Modus Ponendo Tollens (MPT)

Weakening (Wk)

Weakening (Wk)

$$\begin{vmatrix}
\dots \\
\neg^{\pm} \varphi \text{ [available]} \\
\dots \\
\theta \\
\dots
\end{vmatrix}$$

$$\begin{matrix}
\dots \\
\neg (\varphi \land \psi) \quad X \\
\hline
\theta \\
\dots
\end{matrix}$$

$$\begin{matrix}
\dots \\
\neg^{\pm} \psi \text{ [available]} \\
\dots \\
\neg^{\pm} \psi \text{ [available]} \\
\dots \\
\hline
\theta \\
\dots
\end{matrix}$$

$$\begin{matrix}
\dots \\
\neg^{\pm} \psi \quad (n) \\
\dots \\
\neg^{\pm} \psi \quad (n) \\
\dots \\
\neg (\varphi \land \psi) \quad X \\
\hline
\theta \\
\dots
\end{matrix}$$

Rules from chapter 5

Rejecting a Conditional (RC)

Conditional Proof (CP)

Modus Ponendo Ponens (MPP)

Modus Tollendo Tollens (MTT)

Weakening (Wk)

Weakening (Wk)

Rules from chapter 6

Equated Co-aliases (EC)

Distinguished Co-aliases (DC)

$$\begin{bmatrix} \dots \\ [\tau \text{ and } \upsilon \\ \text{ are co-aliases}] \\ \dots \\ \neg \tau = \upsilon \\ \dots \\ \vdots \\ \dots \\ n \text{ DC} \end{bmatrix} \begin{bmatrix} \dots \\ [\tau \text{ and } \upsilon \\ \text{ are co-aliases}] \\ \dots \\ \neg \tau = \upsilon \\ \dots \\ \vdots \\ \dots \\ n \text{ DC} \end{bmatrix}$$

QED given equations (QED=)

$$\begin{array}{c} \dots \\ [\tau_1...\tau_n \text{ and} \\ \upsilon_1...\upsilon_n \text{ are} \\ \text{co-alias series}] \\ \dots \\ P\tau_1...\tau_n \\ \dots \\ \hline P\upsilon_1...\upsilon_n \\ \dots \\ \hline \end{array} \rightarrow \begin{array}{c} \dots \\ [\tau_1...\tau_n \text{ and} \\ \upsilon_1...\upsilon_n \text{ are} \\ \text{co-alias series}] \\ \dots \\ \hline P\tau_1...\tau_n \\ \dots \\ \hline \end{array}$$

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)

$$\begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \\ \text{ are co-aliases}] \\ \dots \\ \hline \\ \varphi \\ \dots \end{array} \qquad \begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \\ \text{ are co-aliases}] \\ \dots \\ \hline \\ \tau = \upsilon \\ \end{array} \qquad X$$

Congruence (Cng)

Note: θ can be an abstract, so $\theta \tau_1 \dots \tau_n$ and $\theta \upsilon_1 \dots \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

Universal Instantiation (UI)

Universal Generalization (UG)

Rules from chapter 8

Proof by Choice (PCh)

Non-constructive Proof (NcP)

Existential Generalization (EG)

Glen Helman 25 Aug 2009