
8.6. Arguments involving descriptive reference

8.6.0. Overview

When definite descriptions are given Russell’s analysis, their properties follow
from the properties of the logical constants used in their analysis, but the
description operator requires special treatment.

8.6.1. The role of definite descriptions in entailment 
The basic principle for definite descriptions is a law describing the
interpretation of the description operator discussed in 8.4.3.

8.6.2. Derivations for the description operator  
Because definite descriptions are not formulas but have formulas as
components, the derivation rule for them takes a different form from those
we have seen so far.

8.6.3. Consequences for adequacy 
The new has effects both for what is needed to show the completeness of the
system and what is necessary to search for finite structures.
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8.6.1. The role of definite descriptions in entailment

If Russell’s analysis of definite descriptions is accepted, their logical properties
follow from those of the logical constants used in the analysis; but the
description operator is a new symbol, and studying its logical properties
requires stating new principles for it. We looked at the logical properties of the
description operator informally in 8.4.3. Now we will look at a way of stating a
principle of entailment that captures these properties.

First, we must first find a place for the description operator in our semantic
scheme. All our logical constants so far—whether the connectives, the
quantifiers, or the identity predicate—have been ways of producing compound
formulas. The description operator, on the other hand, yields a compound term
when it is applied to a predicate. This means that the extension of the operator I
will be a function from the extensions of one-place predicates to reference
values. We can represent the extension of a one-place predicate by the set of
reference values of which it is true, so the extension of the description operator
can be seen as a function which takes a set of reference values as input and
yields a single reference value as output.

According to the account of definite descriptions we are considering, a term
Ix ρx formed using the description operator refers to the single value in the
extension of ρ if there is just one value, and it refers to the nil value otherwise.
This means that the extension of the description operator is not settled until we
identify the nil value as a specific value in the referential range. This
identification must be considered a further component of a structure, a respect
in which two structures may differ. So when we make the description operator
a part of our language, we require that a structure distinguish a member of the
referential range as the nil value. This will serve as the reference value of the
constant individual term ∗ introduced in 8.4.3. Then, to find the semantic value
given to Ix ρx by a structure, we find the extension the structure gives to the
predicate ρ. If the extension of ρ has just one member, that reference value will
be the extension of Ix ρx; otherwise, the extension of Ix ρx is the value the
structure assigns to ∗.

A specification made regarding structures and the interpretation of logical
vocabulary will typically result in some logical law. For example, the
requirement that the referential range serve both as a source of extensions for
terms and as the domain of unrestricted universals gives us the principle of
universal instantiation. And even the simple requirement that a referential range
be non-empty yields the law ∀x θx ⊨ ∃x θx, which assures us that universal
predicates are exemplified. In the case of our specifications for definite
descriptions and the nil value, we get a principle that identifies a certain
sentence as a tautology.



sentence as a tautology.

LAW FOR DESCRIPTIONS.
⊨ (∃z: ρz ∧ (∀y: ρy) z=y) Ixρx = z 

∨ ((∀x: ρx)(∃y: ρy) ¬ x=y ∧ Ixρx = ∗) (for any predicate ρ)

This tautology is a disjunction whose two components express the two
alternatives for the reference value of a definite description. Let us see how that
works in a little more detail.

The existential quantifier in the first disjunct should be familiar as one way
of writing the quantifier that Russell used to analyze definite descriptions. The
whole first disjunct might be read as Something such that (ρ fits it and it is
all that ρ fits) is such that (the thing that ρ fits is it) or, a little more
idiomatically, as The thing that ρ fits is something that ρ fits uniquely.

The second disjunct of the sentence is a conjunction whose first conjunct
says Anything that ρ fits is such that something ρ fits is different from
it. This is a compact but somewhat roundabout way of saying that the
extension of ρ does not have exactly one member—i.e., if we can find anything
in it, we can find something else in it, too. The second conjunct of this part of
the sentence can be read as The thing that ρ fits is the nil.

Putting this all together, the law tells us that the following is a tautology:

Either (i) Ix ρx refers to something that ρ fits uniquely, or (ii) ρ
does not fit exactly one thing and Ix ρx refers to the nil

The first disjunct specifies the reference of the definite description when this is
determined by the description, and the second disjunct specifies the reference
when the description does not succeed in determining it.

In 8.4.3 the content of an analysis using the description operator was
expressed using a similar disjunction. On that account, a sentence θ(Ix ρx) says
that either (i) ρ is true of exactly one thing and (∃x: ρx) θx is true or (ii) ρ is not
true of exactly one thing and θ∗. Given the law for descriptions, the properties
of identity will tell us that

θ(Ix ρx) ≃ ((∃x: ρx) (∀y: ρy) x = y ∧ (∃x: ρx) θx)
∨ ((∀x: ρx) (∃y: ρy) ¬ x = y ∧ θ∗)

and the right-hand side is a more formal version of the disjunction used in
8.4.3.
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8.6.2. Derivations for the description operator

Although, in stating the tautologousness of a single long sentence, the law for
the description operator takes a somewhat different form than those we
considered for other logical constants, the real novelty in handling this constant
lies in the fact that it is used to form terms rather than sentences. This means
that what we must account for is not the role of a premise or conclusion.
Instead, we need to account for what a definite description refers to.

The law for the description operator provides a way to draw conclusions
about what a definite description refers to. We will implement this law in a rule
that amounts to a couple steps in the exploitation of the sentence the law asserts
to be a tautology. In particular, our rule will lead us directly to what we would
get as the result of using a proof by cases to exploit the disjunctive law
(restated using unrestricted quantifiers) and then using proof by choice and
extraction for its existential first disjunct. The remaining non-atomic sentences
in the law are universals so we cannot expect to go further in a single step. We
will call this rule Securing a Description (SD).

⋯ 
Ix ρx: … 

⋯
│⋯
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│⋯

→

⋯ 
Ix ρx: …, n 

⋯
│⋯
││⋯
││ⓐ
│││ρa
│││∀x (ρx → a = x)
│││Ix ρx = a
││├─
│││
││├─
│││φ n
││
│││∀x (ρx → ∃y (ρy ∧ ¬ x = y))
│││Ix ρx = ∗
││├─
│││
││├─
│││φ n
│├─

n SD││φ
│⋯

Fig. 8.6.2-1. Developing a derivation at stage n by securing a definite
description; the independent term a is new to the derivation.

There are really no preconditions for the use of this rule, but it is relevant only
when the definite description in question actually appears in the gap being
developed. The description is displayed above the derivation (perhaps among a
list of other definite descriptions) and the stage number of the development is



list of other definite descriptions) and the stage number of the development is
listed after it to show that it has been handled—we will say secured—at that
stage in developing some gap. The description may need to be secured in a
number of different gaps at different stages, so this stage is perhaps only the
latest of a long list.

The term secure was used in 7.8.1 in connection with the rule ST, which
was intended to provide a way to locate finite structures when the normal
development of a gap would introduce ever more complex compound terms.
Our aim in the rule SD is different but the consequences are similar. When a
definite description is secured, it will be in the same alias set as some simple
term, either the independent term introduced in the first gap or the term ∗.
However, SD is not designed to search for finite structures, and we are as
interested in the other assumptions introduced in each of the two gaps as in the
equations that actually secure the description.

The occurrence of the definite description operator in an argument forces us
to consider ∗ among the terms which will be grouped into alias sets. This is not
merely because this term will be introduced into one of the gaps that is the
result of applying SD. The semantics of the description operator require that
range of reference values contain a distinguished nil value. This value must be
included among the reference values of the terms for which we exploit
universals if we are to insure that the universal is true. And that means we will
need to exploit a universal for ∗ (or a co-alias) before a gap reaches a dead
end. This is true even if ∗ does not actually appear in the gap (in which case it
will be its only co-alias). Thus the terms to be considered when forming alias
sets are not merely the terms appearing the resources and goals of the gap and
its ancestors but also ∗ if any definite description appears among the terms we
need to consider. Although it is possible for new definite descriptions to appear
in the course of a derivation, this will happen only if one appears in the initial
argument, so the requirement for including ∗ is that must be counted among the
terms whenever a definite description appears in the argument whose validity
we are considering.

As an example of the use of SD, here is a derivation showing that if have the
premise There was at most one winner, we can conclude The winner won if
anything did.

Ix Wx: 3
│¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) (14)
├─
│ⓐ
│││Wa (6), (10)
││├─
│││ⓑ
││││Wb (4)
││││∀x (Wx → b = x)
││││Ix Wx = b a, b—IxWx, ∗
│││├─
││││●
│││├─

4 QED=││││W(Ix Wx) 3
│││
││││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) a:5
││││Ix Wx = ∗ a, c, IxWx—∗
│││├─

5 UI ││││Wa → ∃y (Wy ∧ ¬ a = y) 6
6 MPP ││││∃y (Wy ∧ ¬ a = y) 7

││││
││││ⓒ
│││││Wc ∧ ¬ a = c 8
││││├─

8 Ext │││││Wc (10)
8 Ext │││││¬ a = c (11)

│││││
││││││¬ W(Ix Wx)
│││││├─

10 Adj ││││││Wc ∧ Wa X, (11)
11 Adj ││││││¬ a = c ∧ (Wc ∧ Wa) X, (12)
12 EG ││││││∃y (¬ y = c ∧ (Wc ∧ Wy)) X, (13)
13 EG ││││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) X, (14)

││││││●
│││││├─

14 Nc ││││││⊥ 9
││││├─

9 IP │││││W(Ix Wx) 7
│││├─

7 PCh ││││W(Ix Wx) 3
││├─

3 SD │││W(Ix Wx) 2
│├─

2 CP ││Wa → W(Ix Wx)) 1
├─

1 UG │∀y (Wy → W(Ix Wx))

Notice that the list of alias sets in the first gap includes ∗ even though that term
does not appear in either resources or goals of that gap because a definite
description does appear in the initial conclusion.

Notice also that both the premise and the hedge if anything did in the
conclusion played a role in closing the second gap in the derivation above.
Since both are required to insure the existence and uniqueness of a winner, it is
to be expected that the absence of either would keep us from ruling out the
possibility that the definite description is undefined (which is the possibility



possibility that the definite description is undefined (which is the possibility
explored by the second gap).

It may seem odd that The winner won is not a tautology. But on both of the
accounts of definite descriptions that we have considered, it entails Something
won, and that is not a tautology. It follows that The winner didn’t win is not
absurd if it is contradictory to The winner won, and a derivation showing this
when the sentence is interpreted using the description operator provides another
example of the use of SD.

Ix Wx: 1

│¬ W(Ix Wx) (2)
├─
│ⓐ
││Wa (2)
││∀y (Wx → a = x)
││Ix Wx = a (Ix Wx)—a
│├─
││●
│├─

2 Nc=││⊥
│
││∀y (Wx → ∃y (Wy ∧ ¬ x = y)) ∗:3
││Ix Wx = ∗ (Ix Wx)—∗
│├─

3 UI ││W∗ → ∃y (Wy ∧ ¬ ∗ = y) 4
││
││││¬ W∗
│││├─
││││○ ¬ W(Ix Wx), Ix Wx = ∗,
││││ ¬ W∗ ⊭ ⊥
│││├─
││││⊥ 5
││├─

5 IP │││W∗ 4
││
│││∃y (Wy ∧ ¬ ∗ = y)
││├─
│││(unfinished)
││├─
│││⊥ 4
│├─

4 RC ││⊥ 1
├─

1 SD │⊥

The definite description Ix Wx does not appear in the diagram of the
counterexample because, as a compound expression, its value is determined by
the values shown there. In particular, the fact that the extension of W is empty
insures that Ix Wx has the same reference value as ∗, and that would be true
even if the referential range contained more than this value.

The sentence The winner didn’t win is contingent also on Russell’s analysis
provided we interpret it as the denial of The winner won. For the latter
sentence will be contingent according to Russell’s analysis since it is true on
that analysis if and only if there is exactly one winner. However, on Russell’s
analysis, an interpretation giving the winner widest scope—that is, an
interpretation of the sentence as The winner is such that (he or she didn’t
win)—is absurd since it implies Some winner didn’t win and thus that
something has both the property of winning and the property of not winning.
This is another consequence of the ambiguity that can arise with definite
descriptions on Russell’s account. The sentence The winner won is definitely
contingent on his way of analyzing it, but The winner didn’t win may be either
contingent or absurd, depending on whether the negation or definite description
is understood to have wider scope.
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8.6.3. Consequences for adequacy

Our stipulations about the interpretation of definite descriptions insure that any
interpretation of the vocabulary in a description Ix ρx will divide one of the two
gaps that result from SD—that’s why there is no precondition for its application
—so the rule is strict and its addition will not disturb the soundness of our
system. It is also clearly safe since the new gaps it introduces differ from their
parent only by having added resources. But the argument we had used to
establish the completeness of the system of derivations—in particular, the
argument used in 7.7.4 to show that any fully developing gap is divided by an
interpretation—will no longer apply since this argument assumed that the
reference values of all terms could be settled without considering the extensions
of predicates, something that is not true in the case of definite descriptions.

We will not consider ways of reformulating that argument for a system
including SD. Instead we will consider the completeness of a system of
derivations for definite descriptions that employs not only SD but also certain
uses of the rule LFR. The stipulations we have made concerning the
interpretation of the description operator can be imposed on a structure simply
by requiring that it make true every sentence of the form:

∀w  … ∀w  ( (∃z: ρz ∧ (∀y: ρy) z = y) Ix ρx = z
∨ ((∀x: ρx) (∃y: ρy) ¬ x = y ∧ Ix ρx = ∗) )

where we follow the form of the law for descriptions but apply a quantifier ∀w
for each variable w  that appears unbound in ρ. We will call this sentence a
meaning postulate for the description Ix ρx. Making all these meaning postulates
true comes to the same thing as making true all instances of that law for a
language expanded by the range of the structure. When assessing the validity of
a particular argument, all that is relevant is the interpretation of the definite
descriptions actually appearing in the argument, provided we consider
descriptions that contain variables that are not bound within the description.
And the correct intepretation of these descriptions can be insured by the truth
of the meaning postulates for them. That is, if Δ includes the meaning postulate
for each description in an argument Γ / φ, this argument is valid given the
interpretation of the description operator if and only if the argument Γ, Δ / φ is
valid even without stipulating the interpretation of definite descriptions—i.e.,
even if we treat them as unanalyzed individual terms.

Now, any question of validity can be reduced to a question of the validity of
a reductio argument, so let us limit consideration to such arguments. Given an
argument Γ / ⊥, let δ be the conjunction of the meaning postulates for all
descriptions appearing in the members of Γ. Now suppose that Γ / ⊥ is valid
when we fix the interpretation of definite descriptions. We have seen that Γ, δ /

1 n

i

i

when we fix the interpretation of definite descriptions. We have seen that Γ, δ /
⊥ will be valid without fixing this interpretation. Therefore, a derivation for Γ,
δ / ⊥ will close using only the basic system of previous chapters, so it will
certainly close if we add the rules SD and LFR. And the rule SD will enable us
to show the meaning postulate for any description is a tautology, so it will
certainly enable us to show the validity of Γ / δ. Finally, the rule LFR lets us
establish the validity of Γ / ⊥ if we can show both Γ ⊨ δ and Γ, δ ⊨ ⊥. In short,
the system of derivations with SD and LFR is complete because SD enables us
to establish any meaning postulate, and we can establish the validity of all
arguments involving descriptions when we add their meaning postulates as
further premises.

Since it introduces a new independent term, the rule SD introduces a new
way that gaps can be prevented from reaching a dead end. It can be modified
to search for finite structures in the way we have done for other rules using
independent terms, and named, following the same pattern as with those rules,
as Securing a Description Supplemented (SD+).



⋯ 
Ix ρx:… 

⋯
│⋯
││⋯
││
││
││
││
││
││
││
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││
││
││
││
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││
││
││
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││
││
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││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│⋯

→

⋯ 
Ix ρx:…,n 

⋯
│⋯
││⋯
│││ρσ
│││∀x (ρx → σ = x)
│││Ix ρx = σ
││├─
│││
││├─
│││φ n
││
││⋮
││
│││ρτ
│││∀x (ρx → τ = x)
│││Ix ρx = τ
││├─
│││
││├─
│││φ n
││
││ⓐ
│││ρa
│││∀x (ρx → a = x)
│││Ix ρx = a
││├─
│││
││├─
│││φ n
││
│││∀x (ρx → ∃y (ρy ∧ ¬ x = y))
│││Ix ρx = ∗
││├─
│││
││├─
│││φ n
│├─

n SD+││φ
│⋯

Fig. 8.6.3-1. Developing a derivation at stage n by securing a definite
description; the independent term a is new to the derivation and the

terms σ, …, τ include at least one from each current alias set for the gap.

When we use this rule, we consider the possibility that one of the already
existing alias sets provides names of an object that uniquely satisfies the
description.

Notice that one of these alias sets will be the one including ∗. And that is to
be expected since there are two different ways in which the nil value might end
up as the reference of a definite description. This will happen not only when
the description fails to be uniquely satisfied but also when the nil value is the
one value satisfying it uniquely. Indeed, the reference of any term τ will

one value satisfying it uniquely. Indeed, the reference of any term τ will
uniquely satisfy the predicate [ _ = τ], so whether or not [ _ is a C] is not
uniquely satisfied [ _ = the thing that is a C] will be—though, of course,
perhaps only by the nil value.
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8.6.s. Summary

In order to assign a meaning to the description operator with respect to a
referential range, a reference value must be singled out as the nil value. This
serves as the reference value of the constant ∗ and as the reference value of
the description Ix ρx when the extension of ρ is empty or has more than one
member. Then the law for descriptions  asserts that either (i) Ix ρx is
something that is the sole thing ρ is true of or (ii) ρ is not true of exactly one
thing and Ix ρx has the nil value.

A definite description is not a sentence, so it is handled in derivations not by
exploiting it or planning for it as a goal but by securing  it—that is, by
insuring that its reference is settled in the way required by the law for
descriptions. The rule for doing this is Securing a Description (SD) .

This rule is enough to enable us to establish meaning postulates, which state
that definite descriptions are interpreted as we intend. Although the argument
used for completeness of the system of derivations no longer applies, it is
easy to see that the system is complete if we allow the rule LFR to be used to
introduce meaning postulates as lemmas. The rule SD introduces a new term,
so when searching for finite counterexamples, it should be used in the
alternative form Securing a Description Supplemented (SD+) .
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8.6.x. Exercise questions

Analyze each of the following first using Russell’s approach to definite
descriptions and then again using the description operator. Use derivations to
check each form of the argument for validity.

1. The winner was an amateur
An amateur was a winner

2. An amateur was a winner
There was at most one winner
The winner was an amateur

The exercise machine  doesn’t incorporate rules for the description operator; but
you can use it for the logical forms derived from Russell’s analysis.
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8.6.xa. Exercise answers

1. │∃x ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax) 1
├─
│ⓐ
││(Wa ∧ ∀y (¬ y = a → ¬ Wy)) ∧ Aa 2
│├─

2 Ext ││Wa ∧ ∀y (¬ y = a → ¬ Wy) 3
2 Ext ││Aa (4)
3 Ext ││Wa (4)
3 Ext ││∀y (¬ y = a → ¬ Wy)
4 Adj ││Aa ∧ Wa X, (5)
5 EG ││∃x (Ax ∧ Wx) X, (6)

││●
│├─

6 QED││∃x (Ax ∧ Wx) 1
├─

1 PCh │∃x (Ax ∧ Wx)
 Ix Wx: 3

│A(Ix Wx) (3)
├─
││∀x ¬ (Ax ∧ Wx) Ix Wx:2
│├─

2 UI ││¬ (A( Ix Wx) ∧ W(Ix Wx)) 3
3 MPT││¬ W(Ix Wx) (5)

││
││ⓐ
│││Wa (5)
│││∀x (Wx → a = x)
│││Ix Wx = a IxWx—a, ∗
││├─
│││●
││├─

5 Nc= │││⊥ 4
││
│││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) ∗:6
│││Ix Wx = ∗ IxWx—∗
││├─

6 UI │││W∗ → ∃y (Wy ∧ ¬ ∗ = y)) 7
│││
│││││¬ W∗
││││├─
│││││○ A(Ix Wx),¬ W( Ix Wx),
││││├─     ¬ W∗,(IxWx)=∗ ⊭ ⊥
│││││⊥ 8
│││├─

8 IP ││││W∗ 7
│││
││││∃y (Wy ∧ ¬ ∗ = y)
│││├─
││││(unfinished)
│││├─
││││⊥ 7
││├─

7 RC │││⊥ 4
│├─

4 SD ││⊥ 1
├─

1 NcP │∃x (Ax ∧ Wx)

2. │∃x (Ax ∧ Wx) 1
│¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) (15)
├─
│ⓐ
││Aa ∧ Wa 2
│├─

2 Ext ││Aa (5)
2 Ext ││Wa (6), (11)

││
│││∀x ¬ ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax) a:4
││├─

4 UI │││¬ ((Wa ∧ ∀y (¬ y = a → ¬ Wy)) ∧ Aa) 5
5 MPT │││¬ (Wa ∧ ∀y (¬ y = a → ¬ Wy)) 6
6 MPT │││¬ ∀y (¬ y = a → ¬ Wy) 7

│││
││││ⓑ
││││││¬ b = a (12)
│││││├─
│││││││Wb (11)
││││││├─

11 Adj │││││││Wa ∧ Wb X, (12)
12 Adj │││││││¬ b = a ∧ (Wa ∧ Wb) X, (13)
13 EG │││││││∃y (¬ y = a ∧ (Wa ∧ Wy)) X, (14)
14 EG │││││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) X, (15)

│││││││●
││││││├─

15 Nc │││││││⊥ 10
│││││├─

10 RAA││││││¬ Wb 9
││││├─

9 CP │││││¬ b = a → ¬ Wb 8
│││├─

8 UG ││││∀y (¬ y = a → ¬ Wy) 7
││├─

7 CR │││⊥ 3
│├─

3 NcP ││∃x ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax) 1
├─

1 PCh │∃x ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax)



 Ix Wx: 2
│∃x (Ax ∧ Wx) 1
│¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) (16)
├─
│ⓐ
││Aa ∧ Wa 2
│├─

2 Ext ││Aa (6)
2 Ext ││Wa (5), (8), (12)

││
││ⓑ
│││Wb
│││∀y (Wy → b = y) a:4
│││Ix Wx = b a, b—IxWx, ∗
││├─

4 UI │││Wa → b = a 5
5 MPP │││b = a a—b—IxWx, ∗

│││●
││├─

6 QED=│││A(Ix Wx) 3
││
│││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) a:7
│││Ix Wx = ∗ a, c, IxWx—∗
││├─

7 UI │││Wa → ∃y (Wy ∧ ¬ a = y) 8
8 MPP │││∃y (Wy ∧ ¬ a = y) 9

│││
│││ⓒ
││││Wc ∧ ¬ a = c 10
│││├─

10 Ext ││││Wc (12)
10 Ext ││││¬ a = c (13)

││││
│││││¬ A(Ix Wx)
││││├─

12 Adj │││││Wc ∧ Wa X, (13)
13 Adj │││││¬ a = c ∧ (Wc ∧ Wa) X, (14)
14 EG │││││∃y (¬ y = c ∧ (Wc ∧ Wy)) X, (15)
15 EG │││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) X, (16)

│││││●
││││├─

16 Nc │││││⊥ 11
│││├─

11 IP ││││A(Ix Wx) 9
││├─

9 PCh │││A(Ix Wx) 3
│├─

3 SD ││A(Ix Wx) 1
├─

1 PCh │A(Ix Wx)
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