
7.8. Finite & infinite structures

7.8.0. Overview

Many arguments that generate unending derivations have counterexamples that
use only finitely many reference values. But, although the rules can be
modified to uncover such counterexamples, this is not enough to insure
decisiveness.

7.8.1. Finding finite structures  
We can search for finite counterexamples by modifying rules to consider old
terms along with new ones or to consider the possibility that new terms are
co-aliases of old ones.

7.8.2. The failure of decisiveness 
We cannot hope to find counterexamples in this way for all invalid
arguments because the counterexamples to some invalid arguments always
have infinite ranges.
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7.8.1. Finding finite structures

To complete the discussion of the adequacy of the system of derivations for
generalizations, we will look a little more closely at the reasons why it is not
decisive. There are two aspects to the problem, one concerning universals alone
and another concerning their interaction with functors. The infinitely
developing derivations displayed earlier are enough to show us that our system
is not decisive, but the failure of decisiveness in these derivations does not run
very deep and can be overcome by a relatively small adjustment to our rules.
Different adjustments are needed to handle universals and functors, and we will
consider the case of universals first.

The rule UG directs us to reach a universal goal ∀x θx by trying to close a
gap whose goal is an instance θa for some independent term a. Although we
need to close such a gap to show that the universal goal can be reached, this
gap need not point us toward the only way of dividing the original gap. When
we are constructing general arguments we are checking for counterexamples to
generalizations. Thus, for a general argument to go through, we must show that
there is no counterexample of any sort; it is not enough to show that the things
we are already speaking of are not counterexamples.

However, to show that a general argument fails, a counterexample of any
sort, new or old, will do; and a structure dividing a gap between resources and
an instance of the universal for an old term would be enough to show that the
universal is not entailed by those resources. This means that, in a negative use
of derivations, there is some reason for considering gaps whose goals are
instances for old terms. We can refine our analysis of entailment to take
account of this by making the planning rule for universals more elaborate. The
alteration makes derivations cumbersome in practice; but, even if we do not put
it put into actual use, it can help to focus attention on deeper reasons for failure
of decisiveness.

The revised rule is Supplemented Universal Generalization (UG+); it is shown
in Figure 7.8.1-1.
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Fig. 7.8.1-1. Developing a derivation at stage n by planning for an
unrestricted universal; the independent term a is new to the derivation
and the terms σ, τ, …, υ include at least one from each current alias set

for the gap.

The rule UG+ alters UG by adding further new gaps in which we try to
conclude instances of the universal not only for a new term but also for terms
already appearing in the gap. Adding these new gaps will certainly make it no
easier to show that an entailment holds. And they make it no harder either:
anything that can be shown for the independent term a can be shown for any
term, so if that gap closes, all the others will, too. The function of the added
gaps is instead to help us show that an entailment fails while using as few terms
as possible. The new gaps provide new directions in which we may search for a
path that not only remains open but reaches a dead end.

The derivation below shows the effect of the first rule when it is applied to
one of the examples of 7.7.3. The first gap in this derivation has reached a
dead end. Its only active resources are the initial premise and Raa, and neither
is exploitable. In the case of the universal premise, this is because it has already
been exploited for the term a, which is the only term ever appearing in this
gap.

│∀x ¬ ∀y ¬ Rxy a:1
├─

1 UI │¬ ∀y ¬ Ray 2
│
││││Raa
│││├─
││││○ Raa ⊭ ⊥
│││├─
││││⊥ 4
││├─

4 RAA│││¬ Raa 3
││
││ⓑ
│││(unfinished)
││├─
│││¬ Rab 3
│├─

3 UG+││∀y ¬ Ray 2
├─

2 CR │⊥

  

The gap describes a structure whose referential range contains one value, and
the predicate R will be true of the pair consisting of this value and itself. The
initial premise—which says that there is no value that is related to nothing by R
—is thus true in this structure, showing that the reductio entailment
∀x ¬ ∀y ¬ Rxy ⊨ ⊥ fails.

A planning rule for universal goals is one way we can be led to introduce
and unending series of terms. Another way we have seen occurs when a
universal quantifier binds a variable occurring in a compound term. When such
a generalization is instantiated, a new compound terms can be introduced into
the derivation, leading to still further instantiation. We could avoid such further
instantiation if the new compound term was in the same alias set as a term for
which the universal had already been instantiated, so we can investigate the
possibility of avoiding an infinitely developing gap by trying to put new
compound terms in already existing alias sets. On this approach, when we
introduce a new compound term that does not automatically become part of an
already existing alias set, we also look at ways of identifying the new
compound term with existing terms, at least one from each alias set. We will
say that in doing this we are securing the term. Of course, it may be that no
identification with existing terms is consistent with our resources. We allow for
this possibility by adding a gap in which we make no assumptions about the
new term.

The rule shown in Figure 7.8.1-2 can be used to secure terms. We suppose in
turn that a compound term is a co-alias of each of a series of unanalyzed terms
already in the gap and also pursue the development of the gap without new
assumptions. Fullest investigation of the possibilities comes if we include at
least one term from each alias set. We will call this rule Securing a Term (ST).
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Fig. 7.8.1-2. Developing a derivation at stage n by securing a compound
term µ; the terms σ, τ, …, υ include at least one from each current alias

set for the gap other than the one including µ.

Nothing in the statement of this rule requires that the term μ be new, but that is
the only use that we are interested in now.

Although the application of ST would often be quite awkward, it makes short
work of the first of the examples from 7.7.3.

│∀x Rx(fx) a:1
├─

1 UI │Ra(fa)
│
││fa = a a—fa
│├─
││○ Ra(fa), fa = a ⊭ ⊥
│├─
││⊥ 2
│
││(unfinished)
│├─
││⊥ 2
├─

2 ST│⊥

  

Having introduced the term fa through the instantiation at stage 1, we have the
alias sets {a} and {fa}. We consider securing fa by identifying it with the term
a. The first gap has then reached a dead end because the universal has already
been exploited for a member of its single alias set. There is a second unfinished
gap that merely represents the continuation of the gap after stage 1 with no
added assumption about the identity of the term fa. The structure described by
the dead-end gap is one whose range has a single member named by the term
a, which stands in the relation R to itself. The single reference value of this
structure is the only possible input and output for the functor f.
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7.8.2. The failure of decisiveness

The rules UG+ and ST are designed to uncover finite structures whenever
possible. We will not prove that they do this; instead we will see why finite
structures are not always there to be uncovered.

For example, consider the following pair of sentences:

∀x ∀y ∀z ((Rxy ∧ Ryz) → Rxz) 
∀x ¬ Rxx

The first says that the relation expressed by R obeys a law of transitivity, and
the second says that nothing is related to itself by R, which is to say that R is
irreflexive.

What must a structure be like to make these sentences true? Thinking in
terms of the diagrams of 6.4.2, the claim of irreflexivity tells us that there
cannot be any looped arrows. The claim of transitivity tells us that arrows
linked head to tail running from object a to object b and from object b to object
c can be spanned by an arrow running directly from a to c (see Figure 7.8.2-1).

Fig. 7.8.2-1. The arrow spanning two linked arrows that is implied by
transitivity.

Now, if we had a circuit of arrows leading from some object back to itself by
way of other objects, transitivity would imply that there was a loop leading
from the object directly back to itself. Figure 7.8.2-2 illustrates this in a case
where we have Rab, Rbc, Rcd, and Rda. Transitivity made be applied three
times, first to show that Rac (because of Rab and Rbc), then to show that Rad
(because of Rac and Rcd), and finally to show that Raa (because of Rad and
Rda).

Fig. 7.8.2-2. A circuit from a to a reduced to a looped arrow in three
steps by spanning linked arrows.

Irreflexivity would rule out the truth of Raa, so irreflexivity can hold along
with transitivity only if there are no loops or circuits of arrows like the one
illustrated.

Finally, let us add to the statements of transitivity and irreflexivity either of
the sentences ∀x ¬ ∀y ¬ Rxy and ∀x Rx(fx) that we considered in 7.8.1. Each
of the latter sentences tells us, in its own way, that every object is at the tail of
some arrow. A little thought (and attempts at diagrams) will show that there is
no way to manage this with a finite number of objects unless there is
somewhere a loop or a circuit of arrows. So, although the sentences ∀x ¬ ∀y
¬ Rxy and ∀x Rx(fx) can each be made true in a structure with only one
reference value if we consider them by themselves, they cannot be true along
with claims of transitivity and irreflexivity in any structure with only a finite
number of values.

Nevertheless ∀x ¬ ∀y ¬ Rxy and ∀x Rx(fx) are consistent with claims of
transitivity and irreflexivity. For example, let us take the positive integers as
our referential range and let R express the relation < of one number being less
than another. The relation < is transitive and irreflexive. Moreover, each
positive integer is less than some positive integer, so there is no positive integer
that has the property of being less than no positive integer—and that is what ∀x
¬ ∀y ¬ Rxy says on this interpretation. And, if we interpret the functor f by any
function whose output is always larger than its input, ∀x Rx(fx) will also be
true.

So there are sets of sentences that are consistent but whose members cannot
all be true with only a finite range of reference values. This means that, even if
a revised system of derivations using UG+ and ST always succeeds in locating
finite structures, it cannot always provide an answer to our questions about
entailment. If the entailment holds, it will say so. If the entailment fails and can
be shown to fail using a finite structure, it will say so. But, if the entailment
fails and can only be shown to fail only by using an infinite structure, it will
give no answer because it will never finish describing a structure of the
required sort.

Of course, it is possible to describe an infinite structure in a finite space (as
we did informally above), so we might hope that a more substantial
modification of our system might lead us to descriptions of infinite structures
after finitely many stages. But here we must recall the result of Church
mentioned in 7.7.1: although an improved system might provide answers to
some further questions about entailment, no system could answer them all
correctly. In terms of the present discussion, this implies that no matter what
method we choose for describing structures, there are bound to be structures
among those we need to describe that our method would not lead us to.
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7.8.s. Summary

Our system is not decisive in part because we always look to new
independent terms as possible counterexamples to a generalization and
assume that terms are not co-aliases unless our resources tell us otherwise.
But, while we must consider new terms as possible counterexamples and we
must allow for the possibility that terms that have not been made co-aliases
refer to different things, we may also consider alternatives that point toward
smaller structures. The rule Supplemented Universal Generalization (UG+)
leads us to consider instances for old as well as new terms when planning for
a generalization. And we can secure new compound terms as co-aliases of
terms already present by using the rule Securing a Term (ST) .

Even with these rules, we cannot always reach dead-end gaps when
derivations fail because dead-end gaps describe finite structures, and invalid
arguments are not always divided by finite structures. That is, there are some
sets of sentences whose members can be made all true only with an infinite
range of reference values. One example consists of sentences saying that a
predicate R expresses a relation that is irreflexive and transitive and is such
that each reference value stands in this relation to some reference value. No
system like ours could drive a gap to a dead end in such cases and, while a
very different system might do better in some of them, it has been shown that
no system could do so in all such cases.

Glen Helman 13 Nov 2009

7.8.x. Exercise questions

Use the system of derivations to find structures dividing premises from
conclusions in the cases below. You will need to use the rule UG+.
1. ∀x ¬ ∀y ¬ Rxy / ∀x ¬ Rxx
2. ∀x ¬ ∀y Rxy / ¬ ∀x Rxa
3. ∀x ¬ ∀y Rxy / ∀x ¬ Rax

The exercise machine doesn’t incorporate the rule UG+, so derivations for
arguments where it is needed will never end.

Glen Helman 25 Aug 2009



7.8.xa. Exercise answers

1. │∀x ¬ ∀y ¬ Rxy a:3
├─
│ⓐ
│││Raa
││├─

3 UI │││¬ ∀y ¬ Ray 4
│││
││││││Raa
│││││├─
││││││○ Raa ⊭ ⊥
│││││├─
││││││⊥ 6
││││├─

6 RAA│││││¬ Raa 5
││││
││││ⓑ
│││││(unfinished)
││││├─
│││││¬ Rab 5
│││├─

5 UG+││││∀y ¬ Ray 4
││├─

4 CR │││⊥ 2
│├─

2 RAA││¬ Raa 1
├─

1 UG │∀x ¬ Rxx

 

 
from the 1st open gap 

(the 2nd is not fully developed) 

2. │∀x ¬ ∀y Rxy a:2, b:8
├─
││∀x Rxa a:3, b:9
│├─

2 UI ││¬ ∀y Ray 4
3 UI ││Raa (6)

││
││││●
│││├─

6 QED ││││Raa 5
│││
│││ⓑ
│││││¬ Rab
││││├─

8 UI │││││¬ ∀y Rby 10
9 UI │││││Rba (12)

│││││
│││││││●
││││││├─

12 QED│││││││Rba 11
││││││
││││││││¬ Rbb
│││││││├─
││││││││○ Raa,¬ Rab,Rba,¬ Rbb ⊭ ⊥
│││││││├─
││││││││⊥ 13
││││││├─

13 IP │││││││Rbb 11
││││││
││││││ⓒ
│││││││(unfinished)
││││││├─
│││││││Rbc 11
│││││├─

11 UG+││││││∀y Rby 10
││││├─

10 CR │││││⊥ 7
│││├─

7 IP ││││Rab 5
││├─

5 UG+ │││∀y Ray 4
│├─

4 CR ││⊥ 1
├─

1 RAA │¬ ∀x Rxa

 
from the 1st open

gap 
(the 2nd is not fully

developed)



3. │∀x ¬ ∀y Rxy a:3, c:8
├─
│││Raa (6)
││├─

3 UI │││¬ ∀y Ray 4
│││
│││││●
││││├─

6 QED │││││Raa 5
││││
││││ⓒ
││││││¬ Rac
│││││├─

8 UI ││││││¬ ∀y Rcy 9
││││││
│││││││││¬ Rca
││││││││├─
│││││││││○ Raa,¬ Rac,¬ Rca ⊭ ⊥
││││││││├─
│││││││││⊥ 11
│││││││├─

11 IP ││││││││Rca 10
│││││││
│││││││││¬ Rcc
││││││││├─
│││││││││○ Raa,¬ Rac,¬ Rcc ⊭ ⊥
││││││││├─
│││││││││⊥ 12
│││││││├─

12 IP ││││││││Rcc 10
│││││││
│││││││ⓓ
││││││││(unfinished)
│││││││├─
││││││││Rcd 10
││││││├─

10 UG+│││││││∀y Rcy 9
│││││├─

9 CR ││││││⊥ 7
││││├─

7 IP │││││Rac 5
│││├─

5 UG+ ││││∀y Ray 4
││├─

4 CR │││⊥ 2
│├─

2 RAA ││¬ Raa 1
│
│ⓑ
││(unfinished)
│├─
││¬ Rab 1
├─

1 UG+ │∀x ¬ Rax

 
from the 1st and 2nd

open gaps 
(the 3rd and 4th are not

fully developed) 
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