
2.3. Failed proofs and counterexamples

2.3.0. Overview

Derivations can also be used to tell when a claim of entailment does not follow
from the principles for conjunction.

2.3.1. When enough is enough  
A derivation is stopped only when no more rules can be applied. When that
is so, any open gap has reached a dead end.

2.3.2. Dividing gaps  
The active resources of any dead-end gap can be divided from its goal. To
put it another way, we have enough rules to develop further any gap whose
proximate argument cannot be divided.

2.3.3. Validity through the generations 
If we describe as descendents of a gap the gaps that result from developing
and perhaps branching it, the validity of the proximate argument of a gap
rests on the validity of the proximate arguments of its descendents.

2.3.4. Sound and safe rules  
The derivation rules are designed so that, if a gap can be divided, so can at
least one descendent at every stage and, moreover, all of its ancestors.

2.3.5. Presenting counterexamples  
Because we have enough rules and the ones we have are well-behaved, any
gap that reaches a dead end shows us how to divide the premises of the
initial argument from its conclusion.

2.3.6. Reaching decisions 
A derivation will always reach a point where we must stop either because all
gaps are closed or because there is an open gap to which no more rules can
be applied.

2.3.7. Soundness and completeness  
The properties of this system of derivations combine to show that it
establishes the validity of no argument that is not valid and does establish the
validity of all that are.

2.3.8. Formal validity 
The sort of validity we test with derivations is the general validity of
arguments with a given form. An argument that is not valid in virtue of a
given form could be valid nonetheless, and its validity may be recognized by
a deeper analysis of its form.
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2.3.1. When enough is enough

So far we have seen only derivations whose gaps all close, derivations which
show that arguments are valid. But not all arguments are valid, so there ought to
be derivations whose gaps do not all close. If there is no point at which the gaps
of a derivation all close, we will eventually have to give up work on it even
though it still has open gaps. So we should ask what might lead us to give up
work and what, if anything, we can conclude if we do have to stop.

The short answer to the first of these two questions is that we must give up
on a derivation when we run out of rules to apply, either to develop a gap or
close it. Here’s a simple example of a derivation for which that has happened.

│(A ∧ ⊤) ∧ B 1
├─

1 Ext │A ∧ ⊤ 6
1 Ext │B (4)
2 Ext │A
2 Ext │⊤

│
││●
│├─

4 QED││B 3
│
││○ B, A, ⊤ ⊭ C
│├─
││C 3
├─

3 Cnj │B ∧ C
The gap that is marked with the empty circle ○ has C as its goal, and we
currently have no rule to plan for such a goal. There are conjunctions among
the available resources of the gap; but they were exploited in the course of
developing this gap, so they are no longer active. Also, none of the rules for
closing gaps apply here: not QED because the goal is not one of available
resources, not EFQ because ⊥ is not a resource, and not ENV because the goal
is not ⊤. In short, no rule of any of the three sorts can be applied at this point.
Notice that the resources added by exploiting A ∧ ⊤ at stage 2 were never used
later (hence there are no line numbers to their right). As a result, this
exploitation could have been postponed the end. However, the resource A ∧ ⊤
must be exploited before we end work on the derivation because, until it is
exploited, there is a way of developing the derivation further.

We will describe an open gap to which no more rules apply as a dead-end
gap. (Although the qualification dead-end will be reserved for open gaps—
indeed, a gap that has been closed is in one sense no longer a gap—we will
often speak somewhat redundantly of “dead-end open gaps.”) In these terms,
we can say that we are forced to abandon a derivation when every open gap has
reached a dead end. When we consider the significance of dead-end open gaps,
we will see that we may abandon a derivation as soon as one open gap has



we will see that we may abandon a derivation as soon as one open gap has
reached a dead-end. As in the example above, we will use the empty circle to
mark open gaps that have reached a dead end and are thus permanently open.
And, also as is done in that example, to the right of this sign, we will use the
sign ⊭ (negated double right turnstile) to say that, with respect to the analysis of
them displayed in the derivation, the active resources do not entail the goal.
(The reason for qualifying this by reference to the displayed analysis will be
discussed in 2.3.8.)

The way the gaps have developed in this derivation is shown in the following
tree:
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The gap that remains open at the end had reached a dead end at stage 3, but it
is shown to continue at the next stage because it remains open as the derivation
develops elsewhere. As we will see, a single dead-end gap in a derivation for a
claim of entailment tells us that the claim fails, so work may be stopped as soon
as a dead-end is reached. But there is nothing wrong with continuing as long as
there are rules to be applied to other gaps, and we will often do so in examples.
In general we will not assume that a derivation stops as soon as there is a dead-
end gap, so to say that gap has reached a dead-end is not to say that it does not
continue at later stages; it is to say rather that we can be sure it will never close.

From one point of view, the function of a derivation is to transform the
question whether an argument is valid into an analogous question about one or
more simpler arguments. This is the aspect of a derivation that is displayed in
the growth of its argument tree, which is shown below for the argument we
have been considering.

The proximate argument of a dead-end open gap is the end of the line in this
process; it will not be developed further though it may be repeated. We will
call the argument whose validity we initially asked about, the one at the root of

●
│

A, ⊤, B / B

A, ⊤, B / C
│

A, ⊤, B / C
└─────┬─────┘

A, ⊤, B / B ∧ C
│

A ∧ ⊤, B / B ∧ C
│

(A ∧ ⊤) ∧ B / B ∧ C

call the argument whose validity we initially asked about, the one at the root of
the tree, the ultimate argument of the derivation. It is the proximate argument of
the initial gap of the derivation. The contrast between the proximate argument
of a gap and the ultimate argument of a derivation is the source of our use of
the term proximate: the proximate argument of a gap is our immediate concern
while our final goal is to decide whether the ultimate argument of the
derivation is valid.

In discussing the significance of dead end gaps, we will look first at what
reaching a dead-end tells us about the proximate argument of the gap that has
stopped developing and then consider the connection between the validity of
the ultimate argument of a derivation and the existence of dead-end gaps. In
terms of the argument trees, this means we will look first at the tips of unclosed
branches and then ask about the connection between the tips of branches and
the root of the tree.
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2.3.2. Dividing gaps

Now, let’s look more closely at what we can say in general about the
significance of dead-end open gaps. First of all, recall what led us to conclude
that the gap in the example of the last section could not be developed further. A
dead-end gap must not have a conjunction either as its goal or among its active
resources, for otherwise we could apply the rules Cnj or Ext. Moreover, it must
not have ⊤ as a goal or ⊥ as a resource, or else we could apply the rules ENV
or EFQ. Finally, its goal must not be among its resources because then we
could apply the rule QED. So the active resources of dead-end gaps are limited
to unanalyzed components and ⊤ and their goals are limited to unanalyzed
components and ⊥; and no dead-end gap can contain an unanalyzed
component both as an active resource and as its goal.

This means that we can assign truth-values to the unanalyzed components
appearing in a dead-end gap in a way that makes its active resources true and
its goal false. Since no unanalyzed component appears both as a resource and
as the goal, we can make any that appears as a resource T and any that appears
as the goal F. While we are not free to assign values to ⊤ and ⊥, the first can
appear only as a resource and the second only as the goal so they will not keep
us from having true resources and a false goal. In short, we can assign truth
values in a way that divides the proximate argument of the dead-end gap.

In noting this, we described an assignment of truth values to unanalyzed
sentences. This is an extensional interpretation in the sense discussed in 2.1.8,
and it can be presented in a table. The following table displays the
interpretation defined by the dead-end gap of the example we have been
considering.

A B C B, A, ⊤ / C
T T F Ⓣ Ⓣ Ⓣ Ⓕ

The extensional interpretation of unanalyzed components appears on the left of
the table. On the right are the resulting truth values of resources and goals of
the gap (which mainly just repeat the assignments). No value is assigned to ⊤
on the left because its truth value is stipulated by the meaning of the sign.
Unlike A, B, and C, the sentence ⊤ is not something whose value we are free to
assign, and it is something that has a value without any assignment being made
by us.

The idea of division that was introduced in 1.4.2 can be extended to speak in
a compact way of what this interpretation does. When an interpretation divides
the active resources of a gap from its goal—that is, when it divides the
proximate argument of the gap—we will say that it divides the gap. If there is
some interpretation that divides a gap, we will say the gap is divisible;

some interpretation that divides a gap, we will say the gap is divisible;
otherwise we will say that it is indivisible. So an indivisible gap is one that has a
valid proximate argument, and a divisible gap is one whose proximate
argument is not valid. Note also that an extensional interpretation which divides
a gap counts as a counterexample to the validity of the proximate argument of
the gap (where the validity we speak of is again validity relative to a particular
analysis of the argument).

Although we certainly have more to show before we know that the system of
derivations does what it is supposed to, we can say already that it has enough
rules in a certain sense, for we know that, whenever the proximate argument of
a gap is valid, some rule can be applied to either develop or close the gap. For
if there is no rule allowing us to develop the gap, it has reached a dead end, and
we have just seen that the proximate argument of a dead-end gap is not valid.
We will indicate this sort of completeness in our rules by saying that a system
of derivations is sufficient when every dead-end open gap is divided by some
extensional interpretation. Of course, in saying that system is sufficient, we do
not say that every gap whose proximate argument is invalid has already reached
a dead end. We would not expect this to be true since it would mean that we
would never need to apply any rules at all in the case of an invalid argument.
Indeed, one of the things we have yet to show is that any gap whose proximate
argument is invalid will eventually reach a dead end.
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2.3.3. Validity through the generations

The connection between the proximate arguments of dead-end gaps and the
ultimate argument of a derivation lies in the properties of the rules for
developing and closing gaps. We will begin to look at these properties in this
section and then look at them more closely in the next.

It will help to have some ways of talking about the relations between gaps at
various stages of a derivation. It is common to extend some genealogical
vocabulary from family trees to trees in general. In our use of this vocabulary,
we will say that any gap that results from applying a rule is a child of the gap to
which the rule is applied and that the latter gap is its parent. It will be
convenient to apply the same terminology to gaps that continue unchanged
while others develop: a gap at one stage that is open but unchanged at the next
stage is understood to have a single child. Looking farther up or down a line of
descent, we will say that some gaps are ancestors or descendants of others. So
in the tree of gaps associated with the derivation discussed in 2.2.5,
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the lower gap at stage 3 has the gap at stage 2 as its parent and both that and
the two earlier gaps as ancestors. Its children are the lower two gaps at stage 4
and its further descendants are the gaps to their right. The line of gaps at the
top are neither ancestors or descendants of the gap in question.

In this terminology, the initial gap of a derivation is an ancestor of all gaps
of all gaps at each later stage in its development; and they are all its
descendants. Only open gaps will be part of these genealogies, so a gap that is
closed at the next stage of its development has no children. Dead-end open
gaps continue to have children if the derivation is continued at later stages
(remember it need not be), yet they have reached a dead end in the sense that
these children are always identical to their parents.

Next, let us develop a way of speaking about the effect of derivation rules on
the distribution of valid and invalid arguments in the argument tree of a
derivation. In the case of QED, we will initially limit ourselves to its use to
close a gap whose goal is also among the active resources; the wider use of
QED, to close gaps whose goals are among their available but inactive
resources, will be considered in the next section.

The derivation rules Ext and Cnj are based on principles of entailment which
give necessary and sufficient conditions for an entailment to hold. That is, each

give necessary and sufficient conditions for an entailment to hold. That is, each
principle gives a list of conditions all of which must hold if a given entailment
is to hold and which together are enough to insure that it holds. It may seem
odd to say the same about the unconditional claims of entailment that lie behind
the rules QED, ENV, and EFQ; but, by asserting an entailment unconditionally,
they say that an empty list of conditions is sufficient for its truth (and, since an
empty list cannot have a member that fails to hold, satisfying the list is trivially
necessary since it is bound to be satisfied).

Phrased in terms of arguments, each principle tells us that a certain sort of
argument is valid if and only each member of a (perhaps empty) list of
arguments is valid. When the corresponding rule is applied to a gap, the gap is
provided with children whose proximate arguments are those on the list (so the
gap is given no children—that is, it is closed—if the list is empty).

rule prox. arg.
of parent

prox. args.
of children

Cnj Γ / φ ∧ ψ Γ 
Γ 

/ φ
/ ψ

Ext Γ, φ ∧ ψ / χ Γ, φ, ψ / χ
QED Γ, φ / φ (none)
ENV Γ / ⊤ (none)
EFQ Γ, ⊥ / φ (none)

This means that the proximate argument of a gap to which a rule is applied is
valid if and only if all the proximate arguments of any children it has are valid.
And, of course, the same is true of a parent which acquires a child when the
derviation is developed elsewhere because then there is only one child and its
proximate argument is the same as its parent’s.

To say that the proximate argument of a gap is valid is to say that the gap is
indivisible, so we can say that a gap before the last stage is indivisible if and
only if each one of any children it has is indivisible. It is usually more
convenient to speak of divisibility (i.e., of the invalidity of the proximate
argument), and we can rephrase what we have been saying in these terms as
follows.

A gap followed by another stage is divisible if and only if it has a child that
is divisible.

This gives us necessary and sufficient conditions for the divisibility of a gap in
terms of divisibility at the next stage, but it is stated only for cases where there
is a following stage (though it does not require that the gap have children) and
it is stated only for the immediately following stage. We will go on to consider
what can be said of any gap and said with respect to any following stage. That
will be enough to tie the divisibility of the initial gap with the state of the



will be enough to tie the divisibility of the initial gap with the state of the
derivation after all work is done.

First note what we can say in cases where there are two stages following a
gap. For a gap to be divisible in such circumstances, it must have a divisible
child, which must itself have a divisible child. That is, a necessary condition
for divisibility when there are two following stages is having a divisible
grandchild. And that is clearly also sufficient, for a divisible grandchild will
have a divisible parent, which will be a divisible child of the grandparent gap.
Of course, the same thing will work for great-grandchildren, great-great-
grandchildern, and so on, provided there are enough following stages.

In general, we can say this:

For any pair of stages, one earlier than the other, a gap at the earlier stage is
divisible if and only if it has a divisible descendant at the later stage.

Notice that this not only ties the divisibility of a gap to the divisibility of its
descendants, however distant, but also holds for a gap when there are no later
stages at all. The latter point is analogous to one made above about gap-closing
rules: a generalization about an empty collection is bound to be true, no matter
what it says, because there is nothing to serve as a counterexample.

These points are illustrated in the diagram below. It shows a sort of
schematic argument tree that does not display actual arguments, only their
validity or invalidity—i.e., their indivisibility or divisibility. It is intended to
depict a derivation that has come to an end, so the one gap that remains open at
the top is a dead end.

We can distinguish three sorts of cases in this tree. First of all, we know from
the last section that the dead-end gap is divisible. It has no divisible
descendent, but it is not a counterexample to the generalization above because
there is no later stage. Next, all ancestors of the dead-end gap, right down to
the root of the tree, are divisible because each has a divisible descendant. And
finally, in the case of any of the other gaps—i.e., the ones whose proximate
arguments are valid—there is a following stage (the last stage of the derivation

●
│
⊨

●
│
⊨
│
⊨

└┬┘
⊨

⊭
│
⊭
│
⊭
│
⊭

●
│
⊨
│
⊨
│
⊨

└┬┘
⊭

└─┬─┘
⊭
│
⊭

arguments are valid—there is a following stage (the last stage of the derivation
if not an earlier one) at which the gap has no descendant at all, and so certainly
has no divisible descendant. Also, notice that, at stages where such a gap does
have descendants, all its descendents are indivisible.

There is a fourth sort of case that does not appear here, a gap that has no
descendants but has not been closed and is not at a dead end. But this case will
appear only in the last stage of an incomplete derivation, and the generalization
says nothing about it because there is no later stage.

The generalization we have been considering tells us that the way we have
taken the results of a derivation is correct. If there is a dead-end gap—and thus,
by sufficiency, a divisible gap—the initial gap must be divisible, so the
ultimate argument is invalid. On the other hand, if all gaps close, there is a
stage (the one at which the last gap closes) at which the initial gap has no
descendants, so it must be indivisible and the ultimate argument must be valid.
Although this generalization does represent an important property of the system
of derivations, we will not label it (in the way we have labeled the property of
sufficiency) because we will go on in the next section to look further at the
basis for this property and state (and label) some related properties that can be
applied to a wider range of rules, including the extended use of QED that we
excluded from consideration here.
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2.3.4. Sound and safe rules

The necessary and sufficient conditions for divisibility and indivisibility
developed in the last section were based on connections between the divisibility
of gaps at successive stages. In this section, we will look more closely at the
rules and consider not merely how the existence and non-existence of dividing
interpretations is preserved as we develop a derivation but indeed how any
dividing interpretations are themselves preserved. This closer look at the effect
of rules will enable us to give an account of a wider range of possible rules,
including the extended use of QED that was not covered in our discussion in
the last section.

We begin by considering two properties a rule R might have:

R is strict when any interpretation of the derivation that divides a gap to
which the rule R is applied also divides some child of
the gap

R is safe when any interpretation of the derivation that divides a child
of a gap to which the rule R is applied also divides
the parent gap

When a rule is strict we never lose any gap-dividing interpretations as we apply
the rule. When it is safe, we never gain any interpretations. It is the safety of
our rules that implied that the condition for divisibility discussed in the last was
sufficient while their strictness is the source of its necessity. In both cases, we
generalize about interpretations of the whole derivation because an
interpretation that divides a child gap need not assign truth values to enough
sentences to count as an interpretation of the parent. However, every way of the
interpreting the vocabulary of the proximate argument of a gap can be found in
some interpretation of the derivation as a whole, so the restriction to
interpretations of the whole derivation does not really limit the scope of the
generalizations.

Although their association with the necessity and sufficiency of the same
condition suggests a kind of parallel between them, these two properties do not
have the same importance. Although we will see that strictness is a little more
than we need to ask, any serious departure from strictness would undermine the
central function of proofs: to establish validity. For then all gaps of a derivation
might close even though the original argument was invalid. An unsafe rule
would analogously undermine the use of derivations to establish invalidity
because it would introduce the possibility that a derivation for a valid argument
could lead us to a dead-end. But the role of derivations in establishing
invalidity is less central, and their full use in that way depends also on a
property (discussed in 2.3.7) that will fail for rules to be considered in the last
two chapters. This means that safety is dispensible, but no viable system of

two chapters. This means that safety is dispensible, but no viable system of
proof could completely dispense with strictness.

Moreover, moves corresponding to unsafe rules are an important part of
explicit deductive reasoning. For example, a natural approach when we seek a
way to prove a mathematical result is to introduce a lemma (in the sense is
discussed in 1.4.6) as a stepping stone to a final result. If the lemma represents
a significant step beyond the premises, it may be no more obviously a valid
conclusion from the premises than is the final conclusion we hope to establish.
The introduction of such a lemma can be described as a conjecture, and this
conjecture may be wrong: the lemma may not be a valid conclusion from our
premises even when the final conclusion is valid. In short, by seeking to reach
our conclusion by way of this lemma, we may be entering a blind alley. This is
just the sort of thing that would appear in the context of derivations as a dead-
end open gap in a derivation whose initial argument is valid. So conjecturing a
lemma can be thought of as a step in discovering a proof that is valuable but
unsafe.

Another step in a proof that can be valuable but is unsafe is a decision to
focus on only some of the information in one’s premises. This might seem quite
different from a conjecture; but, combined with rules we will consider in the
next chapter, a rule allowing us to conjecture a conclusion could lead us into a
situation in which the active resources entailed less than did the resources at an
earlier stage with the same goal.

Our interest in deductive reasoning is somewhat different from a
mathematician’s. We are aiming not at new and surprising conclusions but
instead at fuller understanding of the steps by which deductive conclusions are
reached. Consequently, we will not be considering the large deductive steps for
which conjecturing lemmas is the only practical approach. We will make use of
lemmas—and we will look at rules for doing so in 2.4—but the chief value of
lemmas for us lies in a restricted range of cases where we can be sure that they
are safe.

Earlier, we set aside uses of QED in which the goal of the gap we close is
among its available resources but not among the active ones. To discuss such
uses of QED, we need to consider a requirement that is less unyielding than
strictness. The following property of a rule R is the one we will employ:

R is sound when any interpretation that divides both a gap to which the
rule R is applied and all ancestors of this gap also
divides some child of the gap

The difference lies in the added phrase and all ancestors of this gap. The
addition makes soundness apparently weaker than strictness because, for
soundness, we do not require that an interpretation divide a child gap simply



soundness, we do not require that an interpretation divide a child gap simply
because it divides the parent but only when it also divides all ancestors of the
parent. However, when all rules are safe, a rule that is sound is also strict. For,
when all rules are safe, an interpretation that divides a gap will also divide all
ancestors of the gap. Thus, when there is a difference between soundness and
strictness, it lies in their handling of the spurious dividing interpretations
introduced by unsafe rules: with strict rule, such interpretations will continue to
divide descendants while, with a sound rule, they might not. So a strict rule
would force us to bear the burden of proving an unsafe conjecture while a
sound rule might allow us to substitute a different way of reaching our initial
goal.

And even when not all rules are safe, soundness is enough to insure that the
ultimate argument of a derivation is valid whenever all gaps close. For, if all
rules are sound, we can be sure that any interpretation that divides a gap and all
its ancestors will divide some child and all ancestors of this child (since these
are just the parent and its ancestors). But any interpretation that divides the
ultimate argument of a derivation also divides any ancestor (since it has none),
so if all rules are sound, this interpretation will also divide some child and all
its ancestors—and so on. That is, as with strictness, when all rules are sound,
an interpretation that divides the ultimate argument must divide some
descendant at each stage; therefore, if all gaps close, there can be no
interpretation dividing the ultimate argument. In short, if a sound rule ignores
any gap-dividing interpretation, it is an interpretation that shows some risky
conjecture does not follow from the initial premises, not one that shows that the
initial conclusion was invalid.

Now, for a gap-closing rule to be sound, it is enough that there be no
interpretation that makes the goal of the gap it closes false while making true
all active resources of the gap and all active resources of the gap’s ancestors.
This means that it is enough for us to soundly close a gap that its goal be
entailed by its active resources together the active resources of its ancestors.
With the rules we have so far, all available resources are included if we take the
active resources of a gap together with the active resources of its ancestors. So
it is sound to close a gap when the goal is among the available resources, and
our extended use of QED is sound.

But we can be even more generous since, by the law for lemmas, adding to a
collection of resources something that is entailed by them will not change what
they entail. In short, we can state rules for closing gaps and have them be
sound if the conclusion of the gap is among its active resources, is among the
active resources of its ancestors, or is something entailed by these resources.
The available resources of a gap always include its active resources and the
active resources of its ancestors, but in 2.4.3 we will consider rules which add

active resources of its ancestors, but in 2.4.3 we will consider rules which add
to the available resources certain conclusions entailed by these resources. And
we have just seen that this sort of addition will not undermine the soundness of
the extended use of QED.

Although we will sometimes need to distinguish soundness and safety (or
even consider strictness) in later discussions, most often we will not. We will
say that a system is conservative when its rules are all safe and sound (which,
remember, comes to the same thing as being all safe and strict). So in a
conservative system, gap-dividing interpretations are neither gained nor lost as
we develop a derivation though they may be spread out among an increasing
number of descendant gaps, something we will see illustrated in the next
section’s example.
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2.3.5. Presenting counterexamples

A dead-end open gap is always divided by an interpretation, and any
interpretation that divides it also divides the ultimate argument of the
derivation. We will finish off derivations that uncover invalidity by displaying
this division. We will do that by exhibiting an interpretation that divides a
dead-end open gap and calculating the truth values of the original premises and
conclusions on that interpretation. In the example discussed in 2.3.1, this
calculation is shown in the following table:

A B C (A ∧ ⊤) ∧ B / B ∧ (⊤ ∧ C)
T T F  T T Ⓣ Ⓕ T F  

Here the values of unanalyzed components have not been repeated on the
right, but they are used to calculate the values of compounds containing them,
with the order of calculation being guided by parentheses. In performing this
calculation we are confirming that the interpretation dividing the gap really
does constitute a counterexample to the ultimate argument; and we will say
that, in constructing the table, we are presenting a counterexample. It will be
our standard way of concluding the treatment of an argument whose derivation
fails.

It is not always the case that all unanalyzed components of the ultimate
argument all appear among the resources and goal of a dead-end gap. When
unanalyzed components do not appear there, values must still be assigned to
them in order for a truth value to be defined for each sentence in the ultimate
argument; but it will not matter what value we assign to these further
unanalyzed components. If an interpretation divides the gap, any way we
choose to extend it to unanalyzed components not appearing in the gap’s
proximate argument will still divide that gap and therefore divide the ultimate
argument.

The example below is designed to illustrate this. Of the three interpretations
shown, the first divides only the first dead-end gap (since it assigns the value T
to the goal of the second dead-end gap), and the last divides only the second
open gap (for a similar reason); but the middle one divides both open gaps.
With 4 unanalyzed components, there are 2×2×2×2 = 2  = 16 possible
interpretations, so there are 13 interpretations that do not divide either gap. The
soundness and safety of our rules insures that the 3 interpretations shown above
constitute counterexamples to the ultimate argument and that the other 13 do
not.

4

   
│A ∧ B 1
├─

1 Ext │A
1 Ext │B (4)

│
││○ A, B ⊭ C
│├─
││C 2
│
│││●
││├─

4 QED│││B 3
││
│││○ A, B ⊭ D
││├─
│││D 3
│├─

3 Cnj ││B ∧ D 2
├─

2 Cnj │C ∧ (B ∧ D)
A B C D A ∧ B / C ∧ (B∧ D)
T T F T  Ⓣ Ⓕ T  divides first dead-end gap
T T F F  Ⓣ Ⓕ F  divides both dead-end gaps
T T T F  Ⓣ Ⓕ F  divides second dead-end gap

While a dead-end gap is always divided by just one interpretation of the
vocabulary appearing in its proximate argument, this interpretation may be
provided by more than one interpretation of the derivation as a whole. That
happens in both gaps here, and it also happens that a single interpretation of the
whole derivation divides both of the gaps. That’s why we end up with 3
interpretations all told.

A B C D
T T F T
T T F F
T T T F

A B C D
T T F T
T T F F

A B C D
T T F F
T T T F

Fig. 2.3.5-1. The interpretations dividing the dead-end gaps of the
example above.

Since each of these interpretations divides all ancestors of the dead-end gap or
gaps that it divides, any one of the three is enough to provide a counterexample
to the ultimate argument. Beginning with chapter 6, it will prove to be most
convenient to assign F to an unanalyzed component whenever we have a
choice, and here that would lead us to the middle interpretation in the case of
both gaps. But, for now, when an unanalyzed component does not appear in the



proximate argument of a dead-end gap, the choice of the value to assign to it is
entirely arbitrary.
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2.3.6. Reaching decisions

We know that if a system of derivations has individual rules that are both
sound and safe and is, as a whole, sufficient, it will never give us an incorrect
answer regarding the validity of an argument. But it is entirely possible that
such a system will give us no answer at all. Of course, if we ever run out of
rules to apply, we will have an answer. For then either all gaps will have closed
or we will have an open gap that has reached a dead-end, and both results
provide an answer. However, without some guarantee that we will eventually
run out of rules, we have no guarantee that we will eventually have an answer.
And such a guarantee is not trivial; in fact, once we get to the last two chapters,
we will be working in a system some of whose derivations do go on forever.

We will say that a system is decisive when we always reach a point where
either all gaps are closed or there is a dead-end open gap. It should be clear
that our system so far is decisive. The rules Ext and Cnj replace conjunctions
among the resources and goals of a gap by simpler sentences and must
therefore eventually eliminate all conjunctions. And when the proximate
argument of a gap contains no conjunctions, the only rules that might apply are
QED, ENV, and EFQ. Each of these closes a gap and there will be only a
limited number of gaps to close, so we must eventually run out of things to do.

But we will go on to consider further rules, and some of these will be
sufficiently differently from those we have considered so far that, even when a
system is decisive, it may not be as easy to see that it is. So let’s look at some
questions that arise in making this judgment. As we do this, it is worth
remembering that, in assessing decisiveness, we are not really interested in
whether a system reaches some valuable goal, only in whether we are bound to
run out of things to do when we apply its rules.

One way to judge whether that is so is to provide some count of how much
there is that might be done, and see whether each rule of the system reduces
that count. However, it is not always easy to describe a single quantity that is
always reduced, and the reason can be seen even with our current system. The
rules QED, ENV, and EFQ reduce the number of open gaps, and that is
certainly a relevant quantity. The rules Ext and Cnj, on the other hand, reduce
the complexity of proximate arguments, something else that cannot go on for
ever. While complexity may seem too abstract to be reduced to a single
number, the simple expedient of counting the number of connectives in a
proximate argument actually provides a useful quantity in the present setting.
So far, so good, but the real problem arises in putting these two numbers
together.

This problem is easiest to see by considering Cnj. While the proximate
arguments of both its children are simpler than that of their parent, it adds to



arguments of both its children are simpler than that of their parent, it adds to
the total number of open gaps. It is tempting to say that this is acceptable
because the increase in the number of open gaps is no greater than the decrease
in the complexity, so the sum of the two is not increased. But this would be
wrong on two counts. First, it is not enough that we avoid increasing the
quantity we are watching: rules that merely kept it the same might go on for
ever doing that. Second, our system would still be decisive if Cnj added 10,
100, or even a million new gaps when it eliminated a single connective. For, in
the absence of a rule that added connectives, it would eventually run out of
connectives to eliminate, and we would be forced to use other rules which did
reduce one quantity without increasing the other.

This is not to say that there is no way of putting the number of open gaps
and the complexity of proximate arguments together to produce a useful
quantity, but any way of doing that must recognize their asymmetry: we can
add gaps as we reduce the number of connectives but only provided we add no
new connectives when we close gaps. However, we will not look at ways of
actually combining these quantities. We will simply employ the abstract idea of
a rule moving things along. We will call a rule that does this progressive,
understanding that whether a rule is progressive depends not only on what
quantities it might reduce but also on what other rules are present. The common
idea associated with our various uses of this term progressive will be that, if
all our rules are progressive, each moves us far enough along that we can never
apply them more than a limited (though perhaps very large) number of times
before we run out of things to do.

So a system all of whose rules are progressive will be decisive; that is, we
will always reach a point at which no more rules can be applied. At that point,
any gap that is left open will have reached a dead end, and the derivation will
have provided an answer about the validity of the original system. And we saw
earlier that if a system is sufficient and conservative, the existence or non-
existence of an open gap when no more rules apply provides a correct answer
regarding validity of the ultimate argument. A system that always eventually
provides an answer and a correct one, can be said to provide a decision
procedure for validity.
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2.3.7. Soundness and completeness

Our current system is sufficient, conservative, and decisive, and it therefore
provides a decision procedure. But we can cut up its properties in another way.
Because it is decisive as well as accurate in its answers, we can say both of the
following about any derivation:

(1) The ultimate argument of a derivation is valid if and only if at some stage
all gaps have closed.

(2) The ultimate argument of a derivation is invalid if and only if eventually
we reach a dead-end open gap.

The if parts of these together say that the system is accurate, and we have seen
that they follow from its conservativeness (along with sufficiency in the case of
the second statement). The only if parts follow from the if parts given
decisiveness. (For example, if the ultimate argument is valid, it must be the
case that all gaps close because otherwise, given decisiveness, we would reach
a dead-end gap and the ultimate argument would not be valid.) Moreover, the
only if parts of the two claims above together imply decisiveness because an
argument will always be either valid or invalid, so they tell us that eventually
either all gaps close or we reach a dead-end gap.

But these two claims, like the properties of soundness and safety, are not of
equal importance. The first is closely tied to the use of derivations to establish
validity while the second is similarly related to their use to find
counterexamples and establish invalidity. The first is of special interest also
because it can be established in some cases where decisiveness fails, and we
will take it as the key property of our system of derivations in chapters 7 and 8
when we must abandon decisiveness.

It is standard to give different names to the two parts of the first statement:

(1a) The ultimate argument of a derivation is valid if at some stage all gaps
have closed

(1b) The ultimate argument of a derivation is valid only if at some stage all
gaps have closed

When we can be sure that (1a) is true, we say that the system is sound. We
have seen that a system will be sound in this sense if all its rules are sound.
When we can be sure that (1b) is true, we say the system is complete because
such a system provides a proof for each valid argument.

We can show that a system is complete if we know (i) that its rules are safe
and the system as whole is sufficient and we know also that (ii) any derivation
whose ultimate argument is valid eventually reaches an end. Property (ii) is not
full decisiveness since it applies only to derivations whose ultimate argument is



full decisiveness since it applies only to derivations whose ultimate argument is
valid. This sort of partial decisiveness is something we will be able to establish
for the systems of chapters 7 and 8, for which full decisiveness does not hold.
And, because this partial decisiveness is enough to provide completeness, all
systems that we will study in the course are both sound and complete.
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2.3.8. Formal validity

As was noted earlier, the use of the term valid in connection with derivations
requires some qualification. In the context of derivations, as in the context of
analyses, Roman capital letters are used to stand for particular sentences that
are not analyzed further, and such sentences need not be logically independent.
That means that a given extensional interpretation of unanalyzed sentences
need not be realized in any possible world. So, in the example of 2.3.1, even
though the appearance of a dead-end gap leads us to write “B, A, ⊤ ⊭ C”, it
might be that the particular sentences A and B do together entail the particular
sentence C, and it could even be that C is tautology or that A and B are
mutually exclusive. In short, knowing that there is an extensional interpretation
of analyzed sentences that assigns them certain truth values does not show that
it is logically possible for the sentences to have those truth values.

On the other hand, our interest in derivations is as a way of applying general
principles of formal logic. And, even though these principles are applied to
particular sentences, their application depends only on the features of these
sentences that are displayed in symbolic analyses. In particular, the use of
derivation rules does not depend on the specific identity of unanalyzed
components. This means that when the gaps of a derivation do all close we
know not only that its premises entail its conclusion but also that the same is
true for any argument having the same form. One way of putting this is to say
that we know the argument to be formally valid or, more precisely, to be valid in
virtue of the form exhibited in the particular analysis we have used. Since
formal validity is a stronger property than simple validity, knowing that an
argument is formally valid is enough to tell us it is valid; and we will usually
drop the qualification formal for this reason. But it is important to remember
that when an argument is labeled “invalid” on the basis of a derivation, this
judgment is relative to a particular analysis of it. Indeed, if this were not so, we
could stop after studying conjunction: the point of considering further logical
forms is to recognize the validity of arguments that count as formally invalid
when considered solely in terms of conjunction.

The idea of validity in virtue of form can itself be spelled out by saying that
an argument is formally valid with respect to a given analysis when any way of
associating sentences with its unanalyzed components produces a valid
argument. So when the derivation of 2.2.4 showed us that (A ∧ B) ∧ C, D ⊨ C
∧ (A ∧ D), this told us something not only about the specific sentences (A ∧ B)
∧ C, D, and C ∧ (A ∧ D) but about any sentences that are related in the way
indicated by these analyses—that is, about the sentences could be formed in
these ways from any choice of sentences, A, B, C, and D. Such choice of actual
sentences, one for each of a group of unanalyzed components, is an intensional



sentences, one for each of a group of unanalyzed components, is an intensional
interpretation in the sense discussed in 2.1.8, so we can say that an analyzed
argument is formally valid when every intensional interpretation of it is valid.

When a derivation leads to a dead-end gap, what we know, speaking most
strictly, is that its ultimate argument is not formally valid. That is because one
test of formal validity is whether there is an extensional interpretation of the
argument that divides its premises from it conclusion. And we will look more
closely at why that is so.

First, if there is an extensional intepretation that divides an argument, we can
construct an intensional interpretation by assigning to each component an
actual sentence with the truth assigned by the extensional interpretation, and
this interpretation will yield an actual argument having the same form as the
original one but with actually true premises and an actually true conclusion. In
example from 2.3.1, the counterexample given by the dead-end gap assigns T
to A and B and F to C. So we might associate English sentences with these
unanalyzed components as follows:

A: Atlanta is in Georgia
B: Boston is in Massachusetts
C: Chicago is in Massachusetts

If so, the proximate argument of the dead-end gap will be

Boston is in Massachusetts
Atlanta is in Georgia

⊤

Chicago is in Massachusetts
and the ultimate argument of the derivation will be

Atlanta is in Georgia and ⊤; moreover, Boston is
in Massachusetts

Boston and Chicago are both in Massachusetts
To get something completely in English, we can replace ⊤ by any tautology. If
we use Atlanta is Atlanta, we get

Atlanta is in Georgia and is Atlanta; moreover,
Boston is in Massachusetts

Boston and Chicago are both in Massachusetts
Each of these particular arguments has a false conclusion along with true
premises not merely in some possible world but in the actual world, so they are
certainly invalid. Because the latter two have the same form as the ultimate
argument of the derivation, that ultimate argument is not valid with respect to

argument of the derivation, that ultimate argument is not valid with respect to
the form displayed in its analysis. If in that argument, the unanalyzed A, B, and
C happen to be sentences such that A, B ⊨ C, the argument will in fact be
valid. For example, it might be

All humans are mortal and are human;
moreover, Socrates is human

Socrates is both human and mortal
But it will remain true that it is not valid with respect to the form displayed in
the symbolic analysis, and we have shown it is not by giving another
interpretation of this form that is not valid.

We have seen that an argument divided by an extensional interpretation is
not formally valid. The converse is also true. That is, if an argument is not
formally valid, its premises are divided from its conclusion by some extensional
interpretation. The claim that an argument is formally valid is a generalization
about both intensional interpretations and possible worlds, and a
counterexample to this generalization is provided an intensional interpretation
and a possible world with the property that the actual argument that results
from the intensional interpretation is divided by the possible world. But any
intensional interpretation and possible world will determine an assignment of
truth values to the unanalyzed components of the argument. In the example
above the value T is assigned to the unanalyzed component A by associating
the sentence Atlanta is in Georgia with A and considering the truth value of
this sentence in the actual world. Since any intensional interpretation and
possible world will determine an extensional interpretation in this way, any
counterexample to the formal validity of a symbolic argument will provide an
extensional interpretation that divides its premises from its conclusion.

This means that even if we do not define formally validity directly in terms
of indivisibility by extensional interpretations but instead in terms of validity
under any intensional interpretation, it will still be true that an argument is
formally valid if and only if no extensional interpretation divides its premises
from its conclusion.
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2.3.s. Summary

When a derivation is constructed for an invalid argument, we eventually
reach a point where an open gap has reached a dead end  without closing.
We mark such a gap with a empty circle ○ and write its active resources and
goal with the sign ⊭ between to indicate that they do not form a valid
argument. And we will see that the invalidity of the proximate argument of a
dead-end gap implies the invalidity of the ultimate argument for which the
derivation is constructed.

We will often be concerned with formal validity, so we extend to
assignments of truth values the ideas of dividing premises from a conclusion
and of constituting a counterexample to an argument. And we speak of a gap
being divided when its proximate argument is. The fact that any dead-end
open is divided—that its proximate argument has a counterexample—
indicates that our system is sufficient  in the sense of having enough rules to
close all dead-end gaps whose proximate arguments are valid.

When speaking of the tree structure of the gaps of a proof, it is convenient to
use a genealogical metaphor and to speak of a gap at one stage as the parent
of the gaps that derive from it at the next stage, gaps that are its children.
Children of a gap’s children, their children, and so on are descendants  of the
gap, and it is an ancestor  of them. We can state a necessary and sufficient
condition for the divisbility of a gap in terms of the existence of divisible
descendants at later stages.

We can be sure that a counterexample to the proximate argument of a dead-
end gap is a counterexample to the derivation’s ultimate argument provided
all our rules are safe in the sense of never introducing new ways of dividing
gaps. When the converse is true, when we our rules never allow us to ignore
ways that a gap might be divided, they are strict. Since our real interest is in
the ultimate argument of a derivation, it is really enough to attend to dividing
intepretations when they also divide all ancestors of a gap. Rules that insure
that we do this are sound; when all rules are safe, sound rules are also strict.
The idea of soundness enables us to justify the use of available but inactive
resources (to, for example, close gaps) even when not all rules are safe. A
system whose rules are all sound and also safe is conservative.

When a dead-end open gap is divided by an interpretation, this interpretation
is also a counterexample to the ultimate argument of the derivation, and we
will present such a counterexample  as a way of finishing off a derivation
that fails.

6

7

8

A system will be decisive (in the sense that any derivation will always come
to an end) provided its rules are all progressive (in the sense of always
leading us closer to a point where no more can be done). Many rules are
progressive because they either close a gap or replace a goal or active
resource by one or more simpler sentences. A decisive system which is
sufficient and conservative (and is therefore correct in the answers it gives)
provides a decision procedure for formal validity.

Not all systems we consider will provide decision procedures but all will be
sound in the sense of providing proofs only for valid arguments and
complete in the sense of leading us to a proof whenever an argument is
formally valid.

An argument that is valid may have a form that is invalid in the sense that
some intensional interpretation of the unanalyzed components appearing in
the form—i.e., some way of associating actual sentences with them—yields
an invalid argument. Formal validity implies validity, so a derivation that
succeeds shows both, but one that fails only shows formal invalidity.
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2.3.x. Exercise questions

Use the basic system of derivations to check each of the claims below; if a
derivation indicates that a claim fails, present a counterexample (that is, give
an interpretation that divides an open gap and calculate truth values for the
premises and conclusion from it—as is done in the example in 2.3.5, though
you need only provide a single counterexample even when the derivation leads
you to several):
1. A ⊨ A ∧ B
2. A ∧ B ⊨ A ∧ (B ∧ A)
3. B ∧ E, C ∧ ⊤ ⊨ (A ∧ B) ∧ (C ∧ D)
4. A ∧ B, B ∧ C, C ∧ D ⊨ A ∧ D
5. A, B ∧ A, D ⊨ B ∧ ((C ∧ A) ∧ D)

For more exercises, use the exercise machine .
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2.3.xa. Exercise answers

1. │A (2)
├─
││●
│├─

2 QED││A 1
│
││○ A ⊭ B
│├─
││B 1
├─

1 Cnj │A ∧ B

A B A / A ∧ B
T F Ⓣ  Ⓕ

2. │A ∧ B 1
├─

1 Ext │A (4),(6)
1 Ext │B (5)

│
││●
│├─

4 QED││A 2
│
│││●
││├─

5 QED│││B 3
││
│││●
││├─

6 QED│││A 3
│├─

3 Cnj ││B ∧ A 2
├─

2 Cnj │A ∧ (B ∧ A)



3. │B ∧ E 1
│C ∧ ⊤ 2
├─

1 Ext │B (5)
1 Ext │E
2 Ext │C (7)
2 Ext │⊤

│
│││○ B, C, E, ⊤ ⊭ A
││├─
│││A 4
││
│││●
││├─

5 QED│││B 4
│├─

4 Cnj ││A ∧ B 3
│
│││●
││├─

7 QED│││C 6
││
│││○ B, C, E, ⊤ ⊭ D
││├─
│││D 6
│├─

6 Cnj ││C ∧ D 3
├─

3 Cnj │(A ∧ B) ∧ (C ∧ D)

A B C D E B ∧ E, C ∧ ⊤ / (A ∧ B)∧ (C∧ D)
F T T F T  Ⓣ   Ⓣ T  F  Ⓕ  F  

This derivation could have been ended after stage 4 when the first open gap has
reached a dead end. Often answers will show a derivation continued further than
necessary in order to show how the further steps would have worked out. The
counterexample presented here divides both dead-end gaps; there are others that
divide one of the two. Notice that ⊤ is not assigned a value at the left of the table.
Since its value is fixed by the stipulation that it is a tautology, a value need not and
cannot be assigned to it as part of an extensional interpretation.

4. │A ∧ B 1
│B ∧ C 2
│B ∧ D 3
├─

1 Ext │A (5)
1 Ext │B
2 Ext │B
2 Ext │C
3 Ext │B
3 Ext │D (6)

│
││●
│├─

5 QED││A 4
│
││●
│├─

6 QED││D 4
├─

4 Cnj │A ∧ D
Clearly, there is redundancy in the active resources of the gaps after stage 3. Since
both gaps close, the exploitation of the second premise at stage 2 is not necessary
(though it would be necessary before any gap could reach a dead end). It would be
possible to state rules so that the resource B was not repeated at stages 2 and 3, but
such repetition does not ordinarily enlarge derivations significantly and makes it
easier to check whether rules have been applied fully and correctly.



5. │A (6)
│B ∧ A 1
│D (7)
├─

1 Ext │B (5)
1 Ext │A

│
││●
│├─

5 QED││B 2
│
││││○ A,B,D ⊭ C
│││├─
││││C 4
│││
││││●
│││├─

6 QED││││A 4
││├─

4 Cnj │││C ∧ A 3
││
│││●
││├─

7 QED│││D 3
│├─

3 Cnj ││(C ∧ A) ∧ D 2
├─

2 Cnj │B ∧ ((C ∧ A) ∧ D)

A B C D A, B ∧ A, D / B ∧ ((C ∧ A) ∧ D)
T T F T Ⓣ Ⓣ Ⓣ Ⓕ F F
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