
1. Introduction

1.1. Formal deductive logic

1.1.0. Overview

In this course we will study reasoning, but we will study only certain aspects of
reasoning and study them only from one perspective. The special character of our
study is indicated by the label formal deductive logic, and we will begin our
study by seeing what this label means. Each of the terms formal and logic
indicates something about the way in which we will study reasoning while the
term deductive indicates the sort of reasoning we will study. In the subsections
listed below, we will look at each of these three terms in a little more detail.

1.1.1. Logic  
Logic is concerned with features that make reasoning good in certain respects.

1.1.2. Inference and arguments 
The key form of reasoning that we will consider is inference; the premises and
conclusion of an inference make up an argument.

1.1.3. Notation for arguments 
We will often use some compact ways of stating generalizations about
arguments and their components.

1.1.4. Deductive vs. non-deductive inference 
An inference is deductive when its conclusion extracts information already
present in its premises, and such an inference is risk free.

1.1.5. Deductive bounds on inference 
The sentences that constitute risk-free conclusions from given premises form a
lower bound on what can be reasonably concluded, and sentences that are
absolutely incompatible with those premises form an upper bound.

1.1.6. Entailment, exclusion, and inconsistency  
Entailment is the relation between the premises and conclusion of a deductive
inference, and the terms exclusion and inconsistency are tied to the idea of
absolute incompatibility.

1.1.7. Formal logic 
Many cases of entailment can be captured by generalizations concerning certain
linguistic forms, and we will use a quasi-mathematical notation to express these
forms.

Several topographical features of the page you are looking at will be reflected
throughout the text. A special font (this one) is used to mark language that is

throughout the text. A special font (this one) is used to mark language that is
being displayed rather than used; the text will frequently use this sort of
alternative to quotation marks. Another font (this one) is used for special
terminology that is being introduced; the index to the text lists these terms and
provides links to the points where they are explained. In the list of subsections
that appears above, headings have a special formatting ( like this ) that will be used
for links. The links above are links to the subsections themselves, and cross-
references in the text with similar formatting will also function as links to portions
of the text.
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1.1.1. Logic

Logic is a study of reasoning. However, it does not concern the ways and means
by which people actually reason—as psychology does—but rather the sorts of
reasoning that count as good. So, while a psychologist is interested as much in
cases where people get things wrong as in cases where they get them right, a
logician is interested instead in drawing the line between good and bad reasoning
without attempting to explain how cases of either sort come about.

Another way of making this distinction between logic and psychology is to say
that, in logic, the point of view on reasoning is internal: it is a study “from the
inside” in a certain sense. As we study reasoning in this way, we will be
interested in the norms of reasoning—the rules that reasoners feel bound by, the
ideals they strive to reach—rather than the mixed success we observe when we
look from outside on their efforts to put norms of reasoning into practice.

This makes logic much like the study of grammar. A linguist studying the
grammar of a language will be interested in the sort of things people actually say,
but chiefly as evidence of the ways they think words ought to be put together. So,
although linguists do not attempt to lay down the rules of grammar for others and
see their task as one of description rather than prescription, what they attempt to
describe are the (largely unconscious) rules on the basis of which the speakers of
a language judge whether utterances are grammatical.

One way of understanding logical norms suggests that there is more than an
analogy between logic and the study of language. However ineffable language
itself may sometimes seem, it is vastly more concrete than thought, and it has
always served logicians as a tool in their study of reasoning. In the 20  century it
acquired an even greater significance because the traditional view of the relation
between thought and language (according to which thought is independent of
language and language acquires its significance as the expression of thought)
came to be reversed, and thought was seen to derive its significance from the
possibility of linguistic expression. As a result, the norms of thought were seen to
derive from the norms of language, specifically from rules governing certain
aspects of meaning. This view is not uncontroversial, but we will see in 1.2 that
there is a way of describing the norms of reasoning that makes it quite natural to
see them as resting on norms of language.
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1.1.2. Inference and arguments

The norms studied in logic can concern many different features of reasoning, and
we will consider several of these. The most important one and the one that will
receive most of our attention is inference, the action of drawing a conclusion
from certain premises or assumptions.

Fig. 1.1.2-1. The action of inference.

Inferences are to be found in science when generalizations are based on data or
when a hypothesis is offered to explain some phenomenon. They are also to be
found when theorems are proved in mathematics. But the most common case of
inference calls less attention to itself. Much of the process of understanding what
we hear or read can be seen to involve inference because, when we interpret
spoken or written language, our interpretation can usually be formulated as a
statement, and we base this statement on statements in the text we interpret.

The terminology we will use to speak of inference deserves some comment.
The terms premise and assumption both to refer to the starting points of
inference—whether these be observational data, mathematical axioms, or the
statements making up something heard or read. The term premise is most
appropriate when the claim or claims from which we draw a conclusion are ones
that we accept. The term assumption need not carry this suggestion, and we may
speak of something being “assumed merely for the sake of argument.” In
general, we will be far more interested in judging the quality of the transition
from the starting point of an inference to its conclusion than in judging the
soundness of its starting point, so the distinction between premises and
assumptions will not have a crucial role for us. For the most part, we will use the
two terms interchangeably, as alternative expressions for the same idea.

(If it should seem strange to consider conclusions inferred from claims that are
not accepted, imagine going over a body of data to check for inconsistencies
either within the data or with information from other sources. In this sort of case,
you may well draw conclusions from data that you do not accept and, indeed, do
this as a way of showing that the data is unacceptable—by showing, for example,
that it leads to draw contradictory conclusions.)



that it leads to draw contradictory conclusions.)
It is convenient to have a term for a conclusion taken together with the

premises or assumptions on which it is based. We will follow tradition and label
such a combination of premises and conclusion an argument. A particularly
graphic way of writing an argument is to list the premises (in any order) with the
conclusion following and separated off by a horizontal line (as shown in Figure
1.1.2-1). The sample argument shown here is a version of a widely used
traditional example and has often served as a paradigm of the sort of reasoning
studied by deductive logic.

premises All humans are mortal 
Socrates is human

conclusion Socrates is mortal
Fig. 1.1.2-2. The components of an argument.

When we need to represent an argument horizontally, we will use / (virgule or
slash) to divide the premises from the conclusion, so the argument above might
also be written as All humans are mortal, Socrates is human / Socrates is
mortal.

Notice that the information expressed in the conclusion of this argument is the
result of an interaction between the two premises. In its broadest sense, the
traditional term syllogism (whose etymology might be rendered as ‘reckoning
together’) applies in the first instance to inference that is based on such
interaction, and the argument above is a traditional example of a syllogism.
Another traditional term, immediate inference, applied to arguments with a single
premise. The term immediate is not used here in a temporal sense but instead to
capture the idea of a conclusion that is inferred from a premise directly and thus
without the “mediation” of any further premises.
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1.1.3. Notation for arguments

It is useful to have some abstract notation so that we can state generalizations
about reasoning without pointing to specific examples. We will use the lower
case Greek letters φ, ψ, and χ to stand for the individual sentences that may
appear as the premises or conclusion of an argument. And we will use upper case
Greek Γ, Σ, and Δ to stand for sets of sentences, such as the set of premises of an
argument. The general form of an argument can then be expressed horizontally
as Γ / φ, where Γ is the set of premises and φ is the conclusion.

Although we speak of the premises of an argument as forming a set, in
practice what appears above a vertical line or to the left of the sign / will often be
a list of sentences, and a symbol like Γ may often be thought of as standing for
such a list. The reason for basing the idea of an argument on that of a set is that
we will have no interest in the order of the premises or the number of times a
premise appear if the premises of an argument are listed. We ignore just such
features of a list when we move from the list to the set whose members it lists—
as we do when we use the notation {a , a , …, a } for a set with members a , a ,
…, a . So, although premises will always be listed in concrete examples, we will
regard two arguments that share a conclusion as the same when their premises
constitute the same set.

There are other features of sets, however, which are of little use to us. In
particular, we have no need to distinguish between a sentence φ and the set {φ}
that has φ as its only member, and we will not attempt to preserve the distinction
between the two in our notation for arguments. If the capital Greek letters were
understood to stand for lists (rather than sets) of sentences, it would make sense
to write Γ, φ / ψ to speak of an argument whose premises consisted of the
members of Γ together with φ. The set of premises of this argument is the union
Γ ∪ {φ} of the sets Γ and {φ}—i.e., it is the set whose members are the members
of Γ and {φ} taken together. Since this idea does not exclude the possibility that
φ is already a member of Γ, it provides convenient way to refer to any argument
whose premises include the sentence φ. We will understand the notation “Γ, φ”
in the same way. That is, imagine the members of Γ are listed, followed by φ.
The premises of the argument Γ, φ / ψ are the sentences that appear anywhere in
this list. The sentence φ definitely appears, so Γ, φ / ψ is an argument whose
premises include φ and whose conclusion is ψ. Since Γ could be any set, this
argument may or may not have premises in addition to φ.

We will use an analogous convention in the vertcial notation for arguments.
So, if Γ is the set {φ, ψ, χ} (i.e., the set whose members are φ, ψ, and χ) and Σ is
the set {ψ, χ}, then all of the following refer to the same argument:

1 2 n 1 2

n



horizontal: Γ / θ φ, ψ, χ / θ ψ, φ, χ, φ / θ Σ, φ / θ Γ, φ / θ φ, Γ / θ

vertical: 

Γ

φ
ψ
χ

ψ
φ
χ
φ

Σ
φ

Γ
φ

φ
Σ

 θ θ θ θ θ θ
Γ = {φ, ψ, χ}

Σ = {ψ, χ}

Fig. 1.1.3-1. Alternative expressions for the same argument (where Γ is
the set whose members are φ, ψ, and χ and Σ is the set whose members

are ψ and χ).

The equivalence of these ways of referring to an argument can be traced to the
equivalence among the following ways of referring to the set whose members are
φ, ψ, and χ:

{φ, ψ, χ} = {ψ, φ, χ, φ} = {ψ, χ} ∪ {φ}
= {φ, ψ, χ} ∪ {φ} = {φ} ∪ {ψ, χ}
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1.1.4. Deductive vs. non-deductive reasoning

Although all good reasoning is of interest to logic, we will focus on reasoning—
and, more specifically, on inference—that is good in a special way. To see what
this way is, let us begin with a rough distinction between two kinds of reasoning a
scientist will typically employ when attempting to account for a body of
experimental data.

An example of the first kind of inference is the extraction of information from
the data. For instance, the scientist may notice that no one who has had disease A
has also had disease B. Even though this conclusion is more than a simple
restatement of the data and could well be an important observation, it is closely
related to what is already given by the data. It may require perceptiveness to see
it, but what is seen does not go beyond the information the data provides. This
sort of close tie between a conclusion and the premises on which it is based is
characteristic of deductive reasoning.

This sort of reasoning appears also in mathematical proof and in some of the
inferences we draw in the course of interpreting oral or written language. It is
found whenever we draw conclusions that do not go beyond the content of the
premises on which they are based and thus introduce no new risk of error. It is
this kind of reasoning that we will study, and the traditional name for this study is
deductive logic.

Science is not limited to the extraction information from data. There usually is
some attempt to go beyond data either to make a generalization that applies to
other cases or to offer an explanation of the case at hand. A conclusion of either
sort brings us closer to the goals of science than does the mere extraction of
information, so it is natural to give more attention to an inference that generalizes
or explains the data than one that merely extracts information from it. But
generalizations and explanations call attention to themselves also because they are
risky, and this riskiness distinguishes them from the extraction of information.

There is no very good term—other than non-deductive—for the sort of
reasoning involved in inferences where we generalize or offer explanations. The
term inductive inference has been used for some kinds of non-deductive reasoning.
But it has often been limited to cases of generalization, and the conclusions of
many non-deductive inferences are not naturally stated as generalizations.
Although scientific explanations typically employ general laws, they usually
employ other sorts of information, too, so they are not just generalizations. And
other examples of inferences whose conclusions are the best explanations of some
data—for example, the sort of inferences a detective draws from the evidence at a
crime scene or that a doctor draws from a patient’s symptoms—will often focus
on conclusions about particular people, things, or events and are not best thought
of as generalizations at all.
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1.1.5. Deductive bounds on reasoning

Let us now look at the relations between deductive and non-deductive
reasoning a little more closely with the aim of distinguishing the role of
deductive inference and other aspects of deductive logic.

First notice that there is a close tie between the riskiness of an inference and
the question whether it merely extracts information or does something more.
The information extracted from data may be no more reliable than the data it is
extracted from, but it certainly will be no less reliable. On the other hand, even
the generalization or explanatory hypothesis that is most strongly supported by
a body of data must go beyond the data if it is to generalize or explain it. And,
if this hypothesis goes beyond what the data says, there is a possibility it is
wrong even when the data is entirely accurate.

The extraction of information can be a first step towards a making a
generalization or inferring an explanation. We have also seen that extracting
information does not merely prepare us to go further: it maps out the territory
that we can reach without risking the leap to a generalization or explanatory
hypothesis. That is, deductive logic serves to distinguish safe from risky
inferences. And this sets a lower bound for inference by marking the range of
conclusions that come for free, without risk.

But deductive logic sets bounds for inference in another respect, too. One
aspect of reasoning is the recognition of tension or incompatibility within
collections of sentences, and this, too, has a deductive side. When a
incompatibility among sentences is a direct conflict among the claims they
make, there is no chance that they could be all be accurate. This sets a sort of
upper bound for inference by marking the range of conclusions that could not
be supported by any amount of further research. For example, we know that a
generalization can never be supported if our data already provides
counterexamples to it.

These two bounds are depicted in the following diagram.

Fig. 1.1.5-1. Deductive bounds on inference.

Sentences in the small circle are the conclusions that are the result of deductive
reasoning. They merely extract information and are risk-free and always well-
supported. Beyond this circle is a somewhat larger circle with fuzzy boundaries
that adds to risk-free conclusions other conclusions that are well supported by
the data but go beyond it and are at least somewhat risky. There is large range
in the middle of diagram that represents conclusions about which our data tells
us nothing. Beyond this, the circle at the right marks the beginning of a region
in which we find sentences deductively incompatible with the data. These are
claims that are ruled out by the data, that cannot be accurate if the data is
accurate. The sentences near this circle but not beyond it are not absolutely
incompatible with the data but are in real conflict with it.

The task of deductive logic is to map the sentences within the narrow circle
of risk-free conclusions and also to map those that are ruled by our premises. It
will turn out that these are not two separate activities: doing one for any
substantial range of sentences will involve doing the other.
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1.1.6. Entailment, exclusion, and inconsistency

When the conclusion of an argument merely states information extracted from
the premises and is therefore risk free, we will say that the conclusion is
entailed by the premises. Using this vocabulary, cases of extraction of
information may characterized by a relation of entailment between the initial
data and the information extracted from it. If we speak in terms of arguments,
entailment is a relation that may or may not hold between given premises and a
conclusion, and we will say that an argument is valid if its premises do entail its
conclusion. We will say also that the conclusion of an argument with this
property is a valid conclusion from its premises. Figure 1.1.6-1 summarizes
these ways of stating the relation of entailment between a set of premises or
assumptions Γ and a conclusion φ.

the assumptions Γ entail the conclusion φ 
the conclusion φ is entailed by the assumptions Γ 

the conclusion φ is a valid conclusion from the assumptions Γ 
the argument Γ / φ is valid

Fig. 1.1.6-1. Several ways of stating a relation of entailment.

We will use the sign ⊨ (double right turnstile) as shorthand for the verb
entails, so we add to the English expressions in Figure 1.1.6-1 the claim Γ ⊨ φ
as a symbolic way of saying that the assumptions Γ entail the conclusion φ.
Using the sign ⊨, we can express the validity of argument in Figure 1.1.2-2 by
writing

All humans are mortal, Socrates is human ⊨ Socrates is mortal

The relation of entailment represents the positive side of deductive reasoning.
The negative side is represented by the idea of a statement φ that cannot be
accurate when a set Γ of statements are all accurate. In this sort of case, we will
say that φ is excluded by Γ, and we will say that cases of this sort are
characterized by the relation of exclusion. We will see later that it is possible to
adapt the notation for entailment to express exclusion, so we will not introduce
special notation for this relation.

Entailment and exclusion are natural opposites, but the nature of the
opposition means that the clear distinction between premises and conclusion is
no longer found when we consider exclusion. When we say that Γ ⊨ φ, we are
saying that there is no chance that φ will fail to be accurate when the members
of Γ are all accurate. When we say that Γ excludes φ, we are saying that there is
no chance that φ will succeed in being accurate along with the members of Γ.
In the latter case, we are really saying that a set consisting of sentence
consisting of the members of Γ together with φ cannot be wholely accurate, so

consisting of the members of Γ together with φ cannot be wholely accurate, so
it is natural to trace the relation of exclusion to a property of inconsistency that
characterizes such sets: we will say that a set of sentences is inconsistent when
its members cannot be jointly accurate. Then to say that φ is excluded by Γ is
to say that φ is inconsistent with Γ in the sense that adding φ to Γ would produce
an inconsistent set. The symmetry in the roles of terms in a relation of
exclusion is reflected in ordinary ways of expressing this side of deductive
reasoning: the difference between saying That hypothesis is inconsistent
with our data and Our data is inconsistent with that hypothesis is merely
stylistic.

One aspect of the notation we will use for arguments and entailment deserves
a final comment. The signs / and ⊨ differ not only in their content but also in
their grammatical role. A symbolic expression of the form Γ / φ is a noun
phrase since it abbreviates the English expression the argument formed of
premises Γ and conclusion φ, so it is comparable in this respect to an
expression like x + y (which abbreviates the English the sum of x and y). On
the other hand, an expression of the form Γ ⊨ φ is a sentence, and it is thus
analogous to an expression like x < y. In short, ⊨ functions as a verb, but the
sign / functions as a noun. In Γ / φ, the symbols Γ and φ appear not as subject
and object of a verb but as nouns used to specify the reference of a term, much
as the names Linden and Crawfordsville do in the term the distance between
Linden and Crawfordsville. And the relation between the claims

Γ ⊨ φ 
Γ / φ is valid

is analogous to the relation between the claims

Linden is close to Crawfordsville 
The distance between Linden and Crawfordsville is short

(Of course, there are also many respects in which these pairs of claims are not
analogous; for example, the relation expressed by ⊨ has a direction while that
expressed by is close to is reversible.)
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1.1.7. Formal logic

The subject we will study has traditional been given a variety of names.
“Deductive logic” is one. Another is formal logic, and this term reflects an
important aspect of the way we will study deductive reasoning. Even among the
inferences that are deductive, we will consider only ones that do not depend on
the subject matter of the data. This means that these inferences will not depend
on the concepts employed to describe particular subjects, and it also means that
they will not depend the mathematical structures (systems of numbers, shapes,
etc.) that might be employed in such descriptions. This can be expressed by
saying that we will limit ourselves to inferences that depend only on the form of
the claims involved.

The distinction between form and content is a relative one. For example, the
use of numerical methods to extract information can be said to depend on
content by comparison with the sort of inferences we will study. However, it
can count as formal by comparison with other ways of extracting information
since all that matters for much of the numerical analysis of data is the numbers
that appear in a body of measurements, not the nature of the quantities
measured.

Our study is formal in a sense similar to that in which numerical methods are
formal, but it is formal to a greater degree. What matters for formal logic is the
appearance of certain words or grammatical constructions that can be employed
in statements concerning any subject matter. Examples of such logical words
are and, not, or, if, is (in the sense of is identical to), every, and some.
While this list does not include all the logical words we will consider, it does
provide a fair indication of the forms of statements we will study. Indeed, these
seven words could serve as titles for chapters 2-8 of this text, respectively. The
way in which a statement is put together using words like these (and using
logically significant grammatical constructions not directly marked by words) is
its logical form, and formal logic is a study of reasoning that focuses on the
logical forms of statements.

So the subject we will study will be not only deductive logic but formal
logic. That means that the norms of deductive reasoning that we will study will
be general rules applying to all statements with certain logical forms. It
happens that we can give an exhaustive account of such rules in the case of the
logical forms that we will consider, so the content of the course can be defined
by these forms. Truth-functional logic, which will occupy us through chapter 5, is
concerned with logical forms that can be expressed using the words and, not,
or, and if while first-order logic (with identity) is concerned with the full list
above, adding to truth-functional logic forms that can be expressed by the
words is, every, and some.

words is, every, and some.
Another traditional label for the subject we will study is the term symbolic

logic that appears in the course title. Most of what this term indicates about the
content of our study is captured already by the term formal logic because most
of the symbols we use will serve to represent logical forms. Certain of the
logical forms that appear in the study of truth-functional logic are analogous to
patterns appearing in the symbolic statements of algebraic laws. Analogies of
this sort were recognized by G. W. Leibniz (1646-1716) and by others after
him, but they were first pursued extensively by George Boole (1815-1864),
who adopted a notation for logic that was modeled after algebraic notation. The
style of symbolic notation that is now standard among logicians owes
something to Boole (though the individual symbols are different) and
something also to the notation used by Gottlob Frege (1848-1925), who noted
analogies between first-order logic and the mathematical theory of functions.
This interest in analogies with mathematical theories distinguished logic as
studied by Boole and Frege from its more traditional study, and the term
symbolic has often been used to capture this distinction. The phrase
mathematical logic would be equally appropriate, and it has often been used as a
label for the subject we will study. However, it has also been used a little more
narrowly to speak of an application of logic to mathematical theories that
makes these theories objects of mathematical study in their own right. That
application of logic in a mathematical style to mathematics itself produces a
kind of research that is also known as metamathematics (which means, roughly,
‘the mathematics of mathematics’).
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1.1.s. Summary

The following summarizes this section, looking at it subsection by subsection.
Much of the special terminology introduced in the section appears in this
summary, and these terms are often links back to the points in the text where
they were first introduced and explained.

Logic studies reasoning not to explain actual processes of reasoning but
instead to describe the norms of good reasoning.

The central focus of our study of logic will be inference. We will refer to the
starting points of inference as assumptions  or premises and its end as a
conclusion. These two aspects of a stretch of reasoning can be referred to
jointly as an argument . We will separate them by a horizontal line when they
are listed vertically and by the sign / when they are listed horizontally.

We use the lower case Greek φ, ψ, and χ to stand for individual sentences
and upper case Greek Γ, Σ, and Δ to stand for sets of sentences. Our notation
for arguments will not distinguish a set from a list of its members; but it is
really sets that we focus on because, when considering the norms of
inference, we will not distinguish between lists of sentences that determine
the same set.

Inference that merely extracts information from premises or assumptions and
thus brings no risk of new error is deductive  inference. Inference that goes
beyond the content of the premises to, for example, generalize or explain is
then non-deductive . Deductive inference may be distinguished as risk-free in
the sense that it adds no further chance of error to the data. The study of the
norms of deductive inference is deductive logic, and that is topic of this
course.

Since deductive inferences are risk free, they provide a lower bound on the
inferences that are good. Deductive reasoning also sets an upper bound on
good inference by rejecting certain conclusions as absolutely incompatible
with given premises.

The relation between premises and a conclusion that can be deductively
inferred from them is entailment. When the premises and conclusion of an
argument are related in this way, the argument is said to be valid. Our
symbolic notation for this relation is the sign ⊨, where Γ ⊨ φ says that the
premises Γ entail the conclusion φ. A set of sentences is inconsistent  when
its members are mutually incompatible, and a sentence φ is excluded by a
set Γ when φ and the members of Γ are mutually incompatible.

We will be interested in the deductive inferences whose validity is a result of
the logical form of their premises and conclusions; so our study will be an

the logical form of their premises and conclusions; so our study will be an
example of formal logic. The norms of deductive reasoning based on logical
form are analogous to some laws of mathematics. The recognition of these
analogies (especially by Boole  and Frege) has influenced the development
of formal deductive logic over the last two centuries, and logic studied from
this perspective is often referred to as symbolic logic.
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1.1.x. Exercise questions

1. Some of the following references to arguments refer to the same argument
in different ways (remember that changing the order of premises or the
number of times a given premise is referred to does not change the
argument being referred to). If Γ stands for the sentences φ, χ, θ, what are
the different arguments referred to below? Identify each of the arguments
in a-h by listing the sentences making up its premises and conclusion and
tell which of a-h refer to the same argument:

 a. φ, ψ, χ / θ f. φ, θ, ψ, θ / χ
 b. θ, φ, ψ / χ g. Γ, φ / ψ
 c. χ, φ, ψ / θ h. Γ / θ
 d. Γ / ψ i. χ, θ, φ / ψ
 e. Γ, ζ / ψ h. Γ, ψ / χ
2. The basis for testing a scientific hypothesis can often be presented as an

argument whose conclusion is a prediction about the result of the test and
whose premises consist of the hypothesis being tested together with certain
assumptions about the test (e.g., about the operation of any apparatus
being used to perform the test).

hypothesis to be tested:  hypothesis ⎫
assumptions about the test:

⎧
⎨
⎩

assumption 
⋮ 

assumption

⎬ 
｜ 
⎭

premises

prediction of the test result:  prediction  conclusion
Suppose that the prediction is entailed by the hypothesis together with the
assumptions about the test (i.e., suppose that the argument shown above is
valid) and answer the following questions:

 a. Can you conclude that the hypothesis is true on the basis of a
successful test (i.e., one for which the prediction is true)? Why or
why not?

 b. Can you conclude that the hypothesis is false on the basis of an
unsuccessful test (i.e., one for which the prediction is false)? Why or
why not?
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1.1.xa. Exercise answers

1. arguments references to them
(1) φ, χ, ψ / θ a, c
(2) θ, φ, ψ / χ b, f
(3) θ, φ, χ / ψ d, g, i
(4) ζ, θ, φ, χ / ψ e

(5) θ, φ, χ / θ h

(6) θ, φ, χ, ψ / χ j

2. a. Nothing definite can be concluded. The successful test tells you that
some true information has been extracted from the hypothesis and
auxiliary assumptions. But that can be so even if the hypothesis is not
true since a body of information that is not true as a whole can still
contain true information. For example, even if the prediction of the
result of one test holds true, predictions about other tests may not.

 

b. You can conclude that the hypothesis is false provided that the
auxiliary assumptions are all true. The unsuccessful test tells you that
a false prediction has been extracted from the hypothesis together
with auxiliary assumptions about the test, but this can happen even if
the information provided by the hypothesis itself is entirely accurate.
The prediction may have failed, for example, because of incorrect
assumptions about the way some apparatus would work.
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