Appendices

Appendix A. Reference

A.o. Overview

A.1. Basic concepts

Definitions of entailment and related ideas

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Appendix A in pdf format

Glen Helman 28 Aug 2008

A.1. Basic concepts

	•	
Concept	Negative definition	Positive definition
ϕ is entailed by Γ $\Gamma\Rightarrow\phi$	There is no logically possible world in which ϕ is false while all members of Γ are true.	ϕ is true in every logically possible world in which all members of Γ are true.
$φ$ and $ψ$ are (logically) equivalent $φ \Leftrightarrow ψ$	There is no logically possible world in which ϕ and ψ have different truth values.	ϕ and ψ have the same truth value as each other in every logically possible world.
$\varphi \text{ is a}$ $tautology$ $\Rightarrow \varphi$ $(or \top \Rightarrow \varphi)$	There is no logically possible world in which ϕ is false.	ϕ is true in every logically possible world.
ϕ is inconsistent with Γ $\Gamma, \phi \Rightarrow$ $(or$ $\Gamma, \phi \Rightarrow \bot)$	There is no logically possible world in which ϕ is true while all members of Γ are true.	ϕ is false in every logically possible world in which all members of Γ are true.
$\Gamma \text{ is}$ $inconsistent$ $\Gamma \Rightarrow$ $(or \Gamma \Rightarrow \bot)$	There is no logically possible world in which all members of Γ are true.	In every logically possible world, at least one member of Γ is false.
φ is absurd $\varphi \Rightarrow$ $(or \varphi \Rightarrow \bot)$	There is no logically possible world in which ϕ is true.	ϕ is false in every logically possible world.
Σ is rendered exhaustive by Γ $\Gamma \Rightarrow \Sigma$	There is no logically possible world in which all members of Σ are false while all members of Γ are true.	At least one member of Σ is true in each logically possible world in which all members of Γ are true

Glen Helman 28 Aug 2008

A.2. Logical forms

$Forms\ for\ which\ there\ is\ symbolic\ notation$

	Symbolic notation	English notation of	or English reading	
Negation	¬ φ	not φ		
Conjunction	φΛψ	both ϕ and ψ	$(\phi \text{ and } \psi)$	
Disjunction	φ۷ψ	either φ or ψ	(φ or ψ)	
The conditional	$\phi \to \psi$	if ϕ then ψ	(φ implies ψ)	
	$\psi \leftarrow \phi$	yes ψ if φ	(ψ <mark>if</mark> φ)	
Identity	$\tau = \upsilon$	τis υ		
Predication	$\theta \tau_1 \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,,$ an' τ_n (using the	
Compound term	$Y^{\tau}_{1}\tau_{n}$	$ \begin{array}{c} \mathbf{Y} \text{ of } \mathbf{\tau}_1, , \mathbf{\tau}_n \\ \mathbf{Y} \text{ applied to } \mathbf{\tau}_1, , \mathbf{\tau}_n \end{array} $	an' τ_n (using the contraction an' to distinguish this use of and from its use in conjunction and adding series when necessary to avoid ambiguity)	
Predicate abstract	$\left[\varphi\right]_{\mathbf{x}_{1}\mathbf{x}_{n}}$	what φ says of x_1x_n		
Functor abstract	$[\tau]_{x_1x_n}$	$τ$ for x_1x_n		
Universal	$\forall x \theta x$	forall $x \theta x$		
quantification		everything, x, is suc	h that θx	
Restricted	(∀x: ρx)	forall x st ρx θx		
universal	θx everything, x , such that ρx is such that θ			
Existential	$\exists x \; \theta x$	$\text{for some }x\ \theta x$		
quantification		something, x , is such	that θx	
Restricted $(\exists x: \rho x)$		forsome x st ρx θx		
existential	θx	something, x , such t	hat ρx is such that θx	
Definite	lx ρx	the x st ρx		
description		the thing, x , such that ρx		

$Some\ paraphrases\ of\ other\ forms$

Truth-functional compounds

1	rum-junctional compounds			
neither φ nor ψ	¬ (ф V ѱ)			
	¬φΛ¬ψ			
ψ only if ϕ	$\neg \ \psi \leftarrow \neg \ \phi$			
ψ unless φ	$\Psi \leftarrow \neg \ \phi$			
	Generalizations			
All Cs are such that (they)	$(\forall x: x \text{ is a C}) \dots x$			
No Cs are such that (they)	$(\forall x: x \text{ is a C}) \neg \dots$	x		
Only Cs are such that (they)	(∀x: ¬ x is a C) ¬	х		
with: among Bs	add to the restriction:	x is a B		
except Es		¬ x is an E		
other than τ		$\neg x = \tau$		
N	Tumerical quantifier phrases			
At least 1 C is such that (it)	$(\exists x: x \text{ is a C}) \dots x$			
At least 2 Cs are such that (they)	$(\exists x: x \text{ is a C}) (\exists y: y \text{ is a C } \land \neg y = x)$	(x ∧ y)		
Exactly 1 C is such that (it) $ (\exists x: x \text{ is a C}) \text{ (} x \wedge \text{ (} \forall y: y \text{ is a C } \wedge \neg y = x \text{) } \neg y) $ $ or $ $ (\exists x: x \text{ is a C}) \text{ (} x \wedge \text{ (} \forall y: y \text{ is a C } \wedge y) x = y \text{)} $				
Definite descriptions (on Russell's analysis)				
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y = x) \neg y = x) \neg y = x$ or $(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C)$			

Glen Helman 28 Aug 2008

A.3. Truth tables

Taut	ology	Absurdity		Negation	
$\frac{\top}{\mathbf{T}}$		$\frac{\perp}{\mathrm{F}}$		$\begin{array}{c c} \phi & \neg \ \phi \\ \hline T & F \\ F & T \end{array}$	
Conju	nction	Disju	nction	Cond	litional
φΨ ΤΤ Τ F F T F F	φ∧ψ Τ F F F	φΨ ΤΤ Τ F F T F F	φνψ Τ Τ Τ Γ F	φΨ ΤΤ Τ F F T F F	$ \begin{array}{c} \phi \rightarrow \psi \\ T \\ F \\ T \\ T \end{array} $

Glen Helman 28 Aug 2008

A.4. Derivation rules

Basic system

Rules f	or developing	gaps		Rules	for closing	g gaps	
	for resources	_			ı to close	, , ,	rule
atomic sentence		<u>IP</u>	co-	aliases	resources φ	goal φ	QED
negation ¬ φ	CR (if φ not atomic & goal is ⊥)	RAA			φ and ¬ φ	Т	Nc
conjunction						Т	ENV
φΛψ	Ext	Cnj			Т		EFQ
disjunction φ∨ψ	PC	PE		τ—υ		τ = υ	EC
conditional	RC .	СР		τ—υ	¬ τ = υ	Т	DC
$\phi \rightarrow \psi$	(if goal is ⊥)		$\tau_1 - \upsilon_1$,, τ _n -υ _n	$P\tau_1\tau_n$	Pv_1v_n	QED=
universal ∀x θx	<u>WI</u>	UG	τ_1 - υ_1	$,, \tau_n - \upsilon_n$	$ \begin{array}{c} \mathbf{P} \mathbf{\tau}_1 \mathbf{\tau}_n \\ \neg \ \mathbf{P} \mathbf{\upsilon}_1 \mathbf{\upsilon}_n \end{array} $	Т	Nc=
existential ∃x θx	PCh	NcP		Detachm	nent rules (optional)
JA OA				require	ed resource	es rule	!
				main	auxilia	ry	
In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.				$\phi \rightarrow \psi$	φ	MPI)
				Ψ΄Ψ	¬±Ψ	MTT	<u>.</u>
				φνψ	¬± φ or ¬	± Ψ MTF	
				¬ (φ Λ ψ)) φor ψ	MP7	

Additional rules (not guaranteed to be progressive)

Attachment ru	ıles	Rule for lemmas		
$added\ resource$	rule	prerequisite rule		
φΛψ	Adj	the goal is \perp LFR		
$\phi \rightarrow \psi$	Wk			
φνψ	Wk			
¬ (φ Λ ψ)	Wk			
τ = υ	CE			
$\theta \mathbf{u_1}\mathbf{u}_n$	Cng			
∃х Өх	EG			

Diagrams

Rules from chapter 2

Extraction (Ext)

Conjunction (Cnj)

Quod Erat Demonstrandum (QED)

Ex Nihilo Verum (ENV)

Ex Falso Quodlibet (EFQ)

Adjunction (Adj)

Lemma for Reductio (LFR)

Rules from chapter 3

Indirect Proof (IP)

Completing the Reductio (CR)

Reductio ad Absurdum (RAA)

Non-contradiction (Nc)

Rules from chapter 4

Proof by Cases (PC)

Proof of Exhaustion (PE)

Modus Tollendo Ponens (MTP)

Modus Ponendo Tollens (MPT)

Weakening (Wk)

Weakening (Wk)

Rules from chapter 5

Rejecting a Conditional (RC)

Conditional Proof (CP)

Modus Ponendo Ponens (MPP)

Modus Tollendo Tollens (MTT)

Weakening (Wk)

Weakening (Wk)

Rules from chapter 6

Equated Co-aliases (EC)

Distinguished Co-aliases (DC)

$$\begin{bmatrix} \tau \text{ and } \upsilon \text{ are co-aliases} \end{bmatrix}$$

$$\vdots$$

QED given equations (QED=)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)

$$\begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \text{ are co-aliases}] \\ \dots \\ \hline \\ \varphi \\ \dots \\ \hline \end{array} \begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \text{ are co-aliases}] \\ \dots \\ \hline \\ \tau = \upsilon \\ \hline \end{array} \begin{array}{c} X \\ X \\ \hline \end{array}$$

Congruence (Cng)

Note: θ can be an abstract, so $\theta \tau_1 ... \tau_n$ and $\theta \upsilon_1 ... \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are coaliases.

Rules from chapter 7

Universal Instantiation (UI)

Universal Generalization (UG)

Rules from chapter 8

Proof by Choice (PCh)

Non-constructive Proof (NcP)

Existential Generalization (EG)

Glen Helman 28 Aug 2008