
7.6. Insuring generality

7.6.0. Overview

Although the idea of a general argument is not the last addition we will make
to the perspective on proofs introduced in 2.2, it is the key idea needed for the
derivations of this chapter and the next.

7.6.1. How generality can fail  
For us to be able to generalize about what is said using a specific name, what
we have argued must not depend on what this name refers to; and there is
more than one way that this can fail to be so.

7.6.2. Multiply general arguments 
Arguments that establish multiply general conclusions must be general in
several dimensions independently.
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7.6.1. How generality can fail

The examples considered so have not placed much emphasis on the choice of
the term used in a general argument. In many of them, any term could be used.
And, in cases where this is not true (such as the second example of 7.5.5), the
need to use care in choosing a term was accidental. The derivations happened
to already contain terms that might naturally be chosen; but, if different letters
had appeared (or we were less inclined to choose letters from the beginning of
the alphabet), the natural first choice would always work. That will no longer
be so when we consider conclusions involving multiple generality, so, before
considering them, we will look more closely at the requirements for a term to
be independent.

The most basic requirement is that we not rely on special assumptions about
the term from which we hope to generalize. We cannot conclude Everything is
turned on from The amplifier is turned on, so we cannot generalize on the
amplifier in the latter sentence if our justification for it is simply having that
sentence as a premise. That is, the following derivation clearly must be
disallowed

│Ta (2)
├─
│ⓐ
││●
│├─

2 QED││Ta 1
├─

ERROR 1 UG │∀x Tx
and it is ruled out by the requirement that the term flagging a general argument
appear only to the right of the its scope line.

But, of course, that requirement rules out many other derivations, too, and
among them are some that involve no logical error. As was noted in 7.5.3, the
appearance of a term among the assumptions does not imply a use of special
information about it in drawing a given conclusion, and we have ruled any
occurrence of a term outside a scope line it flags, whether this occurrence is in
an assumption or elsewhere. The chief virtue of the severe restriction is
simplicity in its statement, and this simiplicity comes at little cost since, in the
derivations we will consider, there will never be a shortage of new terms to
use. (In principle, there can never be a shortage in any sort of derivation if we
allow new terms to be generated by devices such as the addition of primes or
subscripts.)

The use of a new term does make clear just what sort of argument is
provided for the many instances of the generalization other than the one from
which we generalize. As one example of this, consider the following argument
showing that Everything is turned on really does follow if the premise is



showing that Everything is turned on really does follow if the premise is
extended to say The amplifier is turned on and so is everything else.

│Ta ∧ ∀x (¬ x = a → Tx) 2
├─
│ⓑ

2 Ext ││Ta (6)
2 Ext ││∀x (¬ x = a → Tx) b:4

││
│││¬ Tb (5), (6)
││├─

4 UI │││¬ b = a → Tb 5
5 MTT│││b = a b—a

│││●
││├─

6 Nc= │││⊥
│├─

3 IP ││Tb 1
├─

1 UG │∀x Tx

This analysis uses a paraphrase of else as other than it that will be discussed
in 8.3.1.

The requirement that the term we generalize on does not appear in any
assumption is enough to rule out many unwarranted generalizations but it does
not exclude them all. To see why, suppose we are arguing from the assumption
Everything is like itself. One conclusion we can draw is Wabash is like
Wabash and, in doing so, we have certainly used no special assumptions about
Wabash. But this conclusion says that Wabash has the property of being like
Wabash, and that makes it an instance of the generalization Everything is like
Wabash. Nevertheless generalizing to that conclusion is surely unwarranted.
Here is what this argument might look like in a derivation.

│∀x Lxx b:2
├─
│ⓑ

2 UI ││Lbb (3)
││●
│├─

3 QED││Lbb 1
├─

ERROR 1 UG │∀x Lxb

The problem with this argument is that even though the term Wabash stands in
no special relation to the assumptions, it does stand in a special relation to the
universal conclusion Everything is like Wabash. In particular, it plays a
special role in the predicate that the conclusion claims to be universal. These
considerations lay behind the second requirement for a general argument: if we
wish to generalize from an instance θτ to a universal ∀x θx, the term τ should
not appear in our conclusion; that is, it should not appear in the predicate θ. Just
as in the case of the first requirement, this is more than is strictly necessary:

as in the case of the first requirement, this is more than is strictly necessary:
even if a term has occurrences other than those on which we generalize (i.e.,
has occurrence left behind in the predicate), this fact may not have been
exploited in the argument for it, and the argument might have gone through
with any other term. And our approach in derivations is stricter still since we
require that the term we generalize on appear nowhere after its scope and not
merely that it not appear in the immediately following universal.

The final issue affecting generalization concerns cases where the term we
generalize on does not itself appear outside the general argument but contains
vocabulary which does. Suppose our assumption is Everything has its bad
side. We can conclude Wabash has its bad side. But we cannot go on to
conclude Wabash has everything, as in the derivation on the left below
(where d: [ _’s bad side] and typographical limitations force a boxed rather
than a circled flag).

│∀x Hx(dx) b:2
├─
│

2 UI ││Hb(db) (3)
││●
│├─

3 QED││Hb(db) 1
├─

ERROR 1 UG │∀y Hby

│
│
│││∀x Hx(dx) b:3
││├─

3 UI │││Hb(db) (4)
│││●
││├─

4 QED│││Hb(db) 2
│├─

2 CP ││∀x Hx(dx) → Hb(db) 1
├─

ERROR 1 UG │∀y (∀x Hx(dx) → Hby)

Now the instance from which this conclusion would generalize is an instance
for the term Wabash’s bad side and this term does not appear in either the
assumption or the conclusion, so it satisfies both of the requirements we have
imposed so far. And the same issue can arise when vocabulary is shared with
the conclusion, as in the derivation on the right, which is an attempt to show
∀y (∀x Hx(dx) → Hby)—i.e., Everything is such that (Wabash has it if
everything has its bad side)—to be a tautology by deriving it from no
premises at all.

A requirement that the term we generalize on not share vocabulary with
sentences outside the scope line would take care of this case, and it would be
more than enough to insure that an argument is general. Indeed, in the case of a
compound term, it would be enough to require that the main functor not appear
outside the scope line (so, in the examples above, the real problem lies in the
occurences of the functor [ _ ’s bad side] not the occurences of the term
Wabash). However, it is easier simply to prohibit generalization on compound
terms. Unanalyzed terms that satisfy the first two requirements clearly share no
vocabulary with the assumptions or conclusion so, for those terms, the first two

db

db
│



vocabulary with the assumptions or conclusion so, for those terms, the first two
requirements are enough.
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7.6.2. Multiply general arguments

Although we could enforce the requirements that the term we generalize on
have no connection with assumptions or the conclusion simply by setting aside
a special group of letters for general arguments, that would not be enough to
handle cases where a conclusion is multiply general. For, to establish such a
conclusion, we need more than one general argument, and the terms used in
such arguments must be independent of one another.

The derivation below is a simple illustration of this.
│∀x ∀y Rxy b:3
├─
│ⓐ
││ⓑ

3 UI │││∀y Rby a:4
4 UI │││Rba (5)

│││●
││├─

5 QED│││Rba 2
│├─

2 UG ││∀y Rya 1
├─

1 UG │∀x ∀y Ryx
We begin by applying the planning rule to the universal conclusion, introducing
a as the term on which we will generalize. When the rule is applied a second
time at stage 2, a second new term is introduced, and it must be independent of
the first. That is insured by the rule because, since the term a will appear
outside the scope line of the second general argument, a new term must be
used to flag this scope line.

The effects of not using independent terms is shown in the following faulty
derivation, which attempts to conclude that R holds between every pair of
objects from the assumption that it is reflexive.

│∀x Rxx a:3
├─
│ⓐ
││ⓐ

3 UI │││Raa (4)
│││●
││├─

4 QED│││Raa 2
│├─

ERROR 2 UG ││∀y Ray 1
├─

1 UG │∀x ∀y Rxy
Here the error lies in the use of UG planned for at stage 2, for the premise
really would entail the conclusion if it entailed ∀y Ray. And it is innermost
scope line that violates the requirement that the flagging term not appear
outside the part of the derivation marked by the line.

The recognition of multiple generality in the Middle Ages was a real advance
beyond Aristotle’s theory of syllogisms (in the narrow sense of 7.5.6). The
argument shown below is the sort of pattern the medieval logicians were trying
to account for. Both the premise and the conclusion assert affirmative
generalizations. But the restricting and quantified predicates of the conclusion



generalizations. But the restricting and quantified predicates of the conclusion
themselves involve generalization, and it is the relation that the premise
establishes between these generalizations that makes the conclusion follow. The
theory of syllogisms did not provide the means to analyze predicates, so it was
not able to account for the impact of the premise in this sort of example.

All dogs are mammals

Everything that affects all mammals affects all dogs

│∀x (Dx → Mx) b:5
├─
│ⓐ
│││∀y (My → Fay) b:7
││├─
│││ⓑ
│││││Db (6)
││││├─

5 UI │││││Db → Mb 6
6 MPP│││││Mb (8)
7 UI │││││Mb → Fab 8
8 MPP│││││Fab (9)

│││││●
││││├─

9 QED│││││Fab 4
│││├─

4 CP ││││Db → Fab 3
││├─

3 UG │││∀z (Dz → Faz) 2
│├─

2 CP ││∀y (My → Fay) → ∀z (Dz → Faz) 1
├─

1 UG │∀x (∀y (My → Fxy) → ∀z (Dz → Fxz))

Since the general term thing does not restrict generalizations, the restriction in
the conclusion comes solely from the relative clause that affects all
mammals, and the whole sentence would be represented using restricted
quantifiers as (∀x: x affects all mammals) x affects all dogs The derivation
begins at stage 1 with planning for the unrestricted universal conclusion. At
stage 2 we plan for the new conditional goal and at stages 3 and 4 for the
universal and conditional that represent the claim a affects all dogs,
introducing a new independent term and supplying a supposition that begins
exploitation of the two resources in stages 5-8. Notice that the argument for Fab
is doubly general.
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7.6.s. Summary

There are a number of reasons why it may not be legitimate to generalize
what has been shown for a given term. The argument rests on assumptions
that special to this term. The predicate we would like to assert generally may
contain the term, and it may not be possible to derive its predication of other
terms. The term, while not itself appearing in an assumption or the result of
the generalization, may share vocabulary with one or the other, and the
argument may depend on this connection. These possibilities are all avoided
requirements that the term we generalize on be an unanalyzed term and not
appear outside the scope line whose goal we generalize. These requirements
are more stringent than necessary on logical grounds, but they are simple to
state and cost us little since they can be met simply by introducing a new
unanalyzed term in any general argument.

While the chance of illegitimate generalization could be avoided in many
cases also by using a special set of terms in general arguments, this would
not handle cases of multiply general conclusions, where we need to have
general arguments in the scope of other general arguments. In this case, the
requirements insure that independent terms are independent of one another
and represent multiple independent dimensions of generality.
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7.6.x. Exercise questions

1. Use the system of derivations to establish the following. You may use
detachment and attachment rules.

 a. ∀x ∀y (Rxy → ¬ Ryx) ⇒ ∀x ∀y (¬ x = y → ¬ (Rxy ∧ Ryx))
 b. ∀x ∀y (¬ x = y → ¬ (Rxy ∧ Ryx))

∀x ¬ Rxx
∀x ∀y (Rxy → ¬ Ryx)

 c. ∀x ∀y ∀z ((Rxy ∧ Ryz) → Rxz), ∀x ¬ Rxx ⇒ ∀x ∀y (Rxy → ¬ Ryx)
 d. Everyone loves everyone who loves anyone

If anyone loves anyone, then everyone loves everyone
 e. ∀x ∀y Rxy, ∀x (∀y Ryx → (Fx → Gx)) ⇒ ∀x (Fx → Gx)
 f. Al said everything he remembered

Al is a person who said nothing
Anyone who remembered nothing forgot everything
Al forgot everything

2. Choose one of each alternative pair of premises (enclosed in square
brackets) and one of each alternative pair of words or phrases in the
conclusion so as to make a valid argument. Then analyze the premises and
conclusion and construct a derivation to show that the argument is valid.
You may use detachment and attachment rules.

 a. Everyone watched every snake
[Every cobra is a snake | Every snake is a reptile]

Everyone watched every [cobra | reptile]

 b. No one watched every snake
[Every cobra is a snake | Every snake is a reptile]

No one watched every [cobra | reptile]

 c. No one watched any snake
[Every cobra is a snake | Every snake is a reptile]

No one watched any [cobra | reptile]

 d. Everyone who likes every snake was pleased
[Every cobra is a snake | Every snake is a reptile]

Everyone who likes every [cobra | reptile] was pleased
 e. Everyone who likes a snake was pleased

[Every cobra is a snake | Every snake is a reptile]

Everyone who likes a [cobra | reptile] was pleased

For more exercises, use the exercise machine .
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7.6.xa. Exercise answers

 a. │∀x ∀y (Rxy → ¬ Ryx) a:6
├─
│ⓐ
││ⓑ
││││¬ a = b
│││├─
│││││Rab ∧ Rba 5
││││├─

5 Ext │││││Rab (8)
5 Ext │││││Rba (9)
6 UI │││││∀y (Ray → ¬ Rya) b:7
7 UI │││││Rab → ¬ Rba 8
8 MPP │││││¬ Rba (9)

│││││●
││││├─

9 Nc │││││⊥ 4
│││├─

4 RAA││││¬ (Rab ∧ Rba) 3
││├─

3 CP │││¬ a = b → ¬ (Rab ∧ Rba) 2
│├─

2 UG ││∀y (¬ a = y → ¬ (Ray ∧ Rya)) 1
├─

1 UG │∀x ∀y (¬ x = y → ¬ (Rxy ∧ Ryx))
 b. │∀x ∀y (¬ x = y → ¬ (Rxy ∧ Ryx)) a:5

│∀x ¬ Rxx a:9
├─
│ⓐ
││ⓑ
││││Rab (7),(10)
│││├─
│││││Rba (7)
││││├─

5 UI │││││∀y (¬ a = y → ¬ (Ray ∧ Rya)) b:6
6 UI │││││¬ a = b → ¬ (Rab ∧ Rba) 8
7 Adj │││││Rab ∧ Rba X,(8)
8 MTT │││││a = b a—b
9 UI │││││¬ Raa (10)

│││││●
││││├─

10 Nc=│││││⊥ 4
│││├─

4 RAA ││││¬ Rba 3
││├─

3 CP │││Rab → ¬ Rba 2
│├─

2 UG ││∀y (Ray → ¬ Rya) 1
├─

1 UG │∀x ∀y (Rxy → ¬ Ryx)



 c. │∀x ∀y ∀z ((Rxy ∧ Ryz) → Rxz) a:5
│∀x ¬ Rxx a:10
├─
│ⓐ
││ⓑ
││││Rab (8)
│││├─
│││││Rba (8)
││││├─

5 UI │││││∀y ∀z ((Ray ∧ Ryz) → Raz) b:6
6 UI │││││∀z ((Rab ∧ Rbz) → Raz) a:7
7 UI │││││(Rab ∧ Rba) → Raa 9
8 Adj │││││Rab ∧ Rba X,(9)
9 MPP│││││Raa (11)
10 UI │││││¬ Raa (11)

│││││●
││││├─

11 Nc │││││⊥ 4
│││├─

4 RAA││││¬ Rba 3
││├─

3 CP │││Rab → ¬ Rba 2
│├─

2 UG ││∀y (Ray → ¬ Rya) 1
├─

1 UG │∀x ∀y (Rxy → ¬ Ryx)

 d. (∀x: Px) (∀y: Py) (∀z: Pz ∧ Lzx) Lyz

(∀x:Px) (∀y:Py) (Lxy → (∀z:Pz) (∀w:Pw) Lzw)
│∀x (Px → ∀y (Py → ∀z ((Pz ∧ Lzx) → Lyz))) b:10, a:17
├─
│ⓐ
│││Pa (15), (18)
││├─
│││ⓑ
│││││Pb (11)
││││├─
││││││Lab (15)
│││││├─
││││││ⓒ
││││││││Pc (20)
│││││││├─
││││││││ⓓ
││││││││││Pd (13), (22)
│││││││││├─

10 UI ││││││││││Pb → ∀y (Py → ∀z ((Pz ∧ Lzb) → Lyz)) 10
11 MPP││││││││││∀y (Py → ∀z ((Pz ∧ Lzb) → Lyz)) d:12
12 UI ││││││││││Pd → ∀z ((Pz ∧ Lzb) → Ldz) 13
13 MPP││││││││││∀z ((Pz ∧ Lzb) → Ldz) a:14
14 UI ││││││││││(Pa ∧ Lab) → Lda 16
15 Adj ││││││││││Pa ∧ Lab X, (16)
16 MPP││││││││││Lda (22)
17 UI ││││││││││Pa → ∀y (Py → ∀z ((Pz ∧ Lza) → Lyz)) 18
18 MPP││││││││││∀y (Py → ∀z ((Pz ∧ Lza) → Lyz)) c:19
19 UI ││││││││││Pc → ∀z ((Pz ∧ Lza) → Lcz) 20
20 MPP││││││││││∀z ((Pz ∧ Lza) → Lcz) d:21
21 UI ││││││││││(Pd ∧ Lda) → Lcd) 23
22 Adj ││││││││││Pd ∧ Lda X, (23)
23 MPP││││││││││Lcd (24)

││││││││││●
│││││││││├─

24 QED││││││││││Lcd 9
││││││││├─

9 CP │││││││││Pd → Lcd 8
│││││││├─

8 UG ││││││││∀w (Pw → Lcw) 7
││││││├─

7 CP │││││││Pc → ∀w (Pw → Lcw)) 6
│││││├─

6 UG ││││││∀z (Pz → ∀w (Pw → Lzw)) 5
││││├─

5 CP │││││Lab → ∀z (Pz → ∀w (Pw → Lzw)) 4
│││├─

4 CP ││││Pb → (Lab → ∀z (Pz → ∀w (Pw → Lzw))) 3
││├─

3 UG │││∀y (Py → (Lay → ∀z (Pz → ∀w (Pw → Lzw)))) 2
│├─

2 CP ││Pa → ∀y (Py → (Lay → ∀z (Pz → ∀w (Pw → Lzw)))) 1
├─

1 UG │∀x (Px → ∀y (Py → (Lxy → ∀z (Pz → ∀w (Pw → Lzw)))))
It would be easy to get lost in this argument, but the basic structure has just three
parts: planning what must be shown (stages 1-9) and then applying the premise
twice (stages 10-16 and 17-23) to take us first from Lab to Lda and then from Lda
to Lcd. After stage 9, we have Lcd as the goal and Lab among the resources, and
we also know that a, b, c, and d are all people. The premise tells us that anyone
who loves is loved by everyone. It will then follow from Lab that the predicate
[L _ a] is true of everyone, and it will follow from any predication of [Ld _ ] of a
person that Lcd. Since Lda is both [L _ a]d and [Ld _ ]a, it can link the two
applications of the premise.



 e. │∀x ∀y Rxy b:7
│∀x (∀y Ryx → (Fx → Gx)) a:3
├─
│ⓐ
│││Fa (10)
││├─

3 UI │││∀y Rya → (Fa → Ga) 5
│││
││││¬ Ga (11)
│││├─
│││││ⓑ

7 UI ││││││∀y Rby a:8
8 UI ││││││Rba (9)

││││││●
│││││├─

9 QED ││││││Rba 4
││││├─

6 UG │││││∀y Rya 5
││││
│││││Fa → Ga 10
││││├─

10 MPP│││││Ga (11)
│││││●
││││├─

11 Nc │││││⊥ 5
│││├─

5 RC ││││⊥ 4
││├─

4 IP │││Ga 2
│├─

2 CP ││Fa → Ga 1
├─

1 UG │∀x (Fx → Gx)
There is not much alternative to the use of RC to exploit
∀y Rya → (Fa → Ga). Although ∀y Rya follows from the premise, it
is not an instance of it and thus does not come by UI; and, although
the resources Fa and ¬ Ga together entail ¬ (Fa → Ga), we have no
attachment rule implementing this entailment. So we do not have an
opportunity to apply either MPP or MTT.

 f. (∀x: Rax) Sax 
Pa ∧ ∀x ¬ Sax 

(∀x: Px ∧ ∀y ¬ Rxy) ∀z Fxz

∀x Fax
│∀x (Rax → Sax) c:9
│Pa ∧ ∀x ¬ Sax 1
│∀x ((Px ∧ ∀y ¬ Rxy) → ∀z Fxz) a:3
├─

1 Ext │Pa (7)
1 Ext │∀x ¬ Sax c:10

│ⓑ
3 UI ││(Pa ∧ ∀y ¬ Ray) → ∀z Faz 5

││
│││¬ Fab (14)
││├─
│││││●
││││├─

7 QED │││││Pa 6
││││
│││││ⓒ

9 UI ││││││Rac → Sac 11
10 UI ││││││¬ Sac (11)
11 MTT││││││¬ Rac (12)

││││││●
│││││├─

12 QED││││││¬ Rac 8
││││├─

8 UG │││││∀y ¬ Ray 6
│││├─

6 Cnj ││││Pa ∧ ∀y ¬ Ray 5
│││
││││∀z Faz b:13
│││├─

13 UI ││││Fab (14)
││││●
│││├─

14 Nc ││││⊥ 5
││├─

5 RC │││⊥ 4
│├─

4 IP ││Fab 2
├─

2 UG │∀x Fax
There were many other approaches that might have been attempted at
stage 3. The key to seeing the approach that was taken is thinking
through the content of the resources at that point. Since we have Al is
a person and Al said nothing (which were added at stage 1), the first
premise should allow us to conclude that Al is a person who
remembered nothing. The third premise should thus allow us to reach
the goal of showing that Al forgot b. Stage 3 is a first step along these
lines but we will not be able to add the resource needed to apply
MPP to this conditional, so stages 4 and 5 set out to exploit it to



MPP to this conditional, so stages 4 and 5 set out to exploit it to
complete a reductio.

2. a. Everyone watched every snake 
Every cobra is a snake

Everyone watched every cobra

(∀x: Px) (∀y: Sy) Wxy 
(∀x: Cx) Sx

(∀x: Px) (∀y: Cy) Wxy

│∀x (Px → ∀y (Sy → Wxy)) a:5
│∀x (Cx → Sx) b:7
├─
│ⓐ
│││Pa (6)
││├─
│││ⓑ
│││││Cb (8)
││││├─

5 UI │││││Pa → ∀y (Sy → Way) 6
6 MPP │││││∀y (Sy → Way) b:9
7 UI │││││Cb → Sb 8
8 MPP │││││Sb (10)
9 UI │││││Sb → Wab 10
10 MPP│││││Wab (11)

│││││●
││││├─

11 QED│││││Wab 4
│││├─

4 CP ││││Cb → Wab 3
││├─

3 UG │││∀y (Cy → Way) 2
│├─

2 CP ││Pa → ∀y (Cy → Way) 1
├─

1 UG │∀x (Px → ∀y (Cy → Wxy))

 b. No one watched every snake 
Every snake is a reptile

No one watched every reptile

(∀x: Px) ¬ (∀y: Sy) Wxy 
(∀x: Sx) Rx

(∀x: Px) ¬ (∀y: Ry) Wxy

│∀x (Px → ¬ ∀y (Sy → Wxy)) a:3
│∀x (Sx → Rx) b:9
├─
│ⓐ
│││Pa (4)
││├─

3 UI │││Pa → ¬ ∀y (Sy → Way) 4
4 MPP │││¬ ∀y (Sy → Way) 6

│││
││││∀y (Ry → Way) b:11
│││├─
│││││ⓑ
│││││││Sb (10)
││││││├─

9 UI │││││││Sb → Rb 10
10 MPP│││││││Rb (12)
11 UI │││││││Rb → Wab 12
12 MPP│││││││Wab (13)

│││││││●
││││││├─

13 QED│││││││Wab 8
│││││├─

8 CP ││││││Sb → Wab 7
││││├─

7 UG │││││∀y (Sy → Way) 6
│││├─

6 CR ││││⊥ 5
││├─

5 RAA │││¬ ∀y (Ry → Way) 2
│├─

2 CP ││Pa → ¬ ∀y (Ry → Way) 1
├─

1 UG │∀x (Px → ¬ ∀y (Ry → Wxy))



 c. No one watched any snake 
Every cobra is a snake

No one watched any cobra

(∀x: Sx) (∀y: Py) ¬ Wyx 
(∀x: Cx) Sx

(∀x: Cx) (∀y: Py) ¬ Wyx

│∀x (Sx → ∀y (Py → ¬ Wyx)) a:5
│∀x (Cx → Sx) a:3
├─
│ⓐ
│││Ca (4)
││├─

3 UI │││Ca → Sa 4
4 MPP│││Sa (6)
5 UI │││Sa → ∀x (Px → ¬ Wxa) 6
6 MPP│││∀x (Px → ¬ Wxa) (7)

│││●
││├─

7 QED│││∀x (Px → ¬ Wxa) 2
│├─

2 CP ││Ca → ∀x (Px → ¬ Wxa) 1
├─

1 UG │∀x (Cx → ∀y (Py → ¬ Wyx))
The relative simplicity of this derivation is due to the fact that the
difference between the first premise and the conclusion is not deeply
embedded in their structures.

 d. Everyone who likes every snake was pleased 
Every snake is a reptile

Everyone who likes every reptile was pleased
(∀x: Px ∧ (∀y: Sy) Lxy) Dx 

(∀x: Sx) Rx

(∀x: Px ∧ (∀y: Ry) Lxy) Dx
│∀x ((Px ∧ ∀y (Sy → Lxy)) → Dx) a:4
│∀x (Sx → Rx) b:11
├─
│ⓐ
│││Pa ∧ ∀y (Ry → Lay) 3
││├─

3 Ext │││Pa (7)
3 Ext │││∀y (Ry → Lay) b:13
4 UI │││(Pa ∧ ∀y (Sy → Lay)) → Da 6

│││
││││¬ Da (6)
│││├─

6 MTT ││││¬ (Pa ∧ ∀y (Sy → Lay)) 7
7 MPT ││││¬ ∀y (Sy → Lay) 8

││││
│││││ⓑ
│││││││Sb (12)
││││││├─

11 UI │││││││Sb → Rb 12
12 MPP│││││││Rb (14)
13 UI │││││││Rb → Lab 14
14 MPP│││││││Lab (15)

│││││││●
││││││├─

15 QED│││││││Lab 10
│││││├─

10 CP ││││││Sb → Lab 9
││││├─

9 UG │││││∀y (Sy → Lay) 8
│││├─

8 CR ││││⊥ 5
││├─

5 IP │││Da 2
│├─

2 CP ││(Pa ∧ ∀y (Ry → Lay)) → Da 1
├─

1 UG │∀x ((Px ∧ (∀y: Ry) Lxy) → Dx)



 e. Everyone who likes a snake was pleased 
Every cobra is a snake

Everyone who likes a cobra was pleased
(∀x: Sx) (∀y: Py ∧ Lyx) Dy 

(∀x: Cx) Sx

(∀x: Cx) (∀y: Py ∧ Lyx) Dy
│∀x (Sx → ∀y ((Py ∧ Lyx) → Dy)) a:5
│∀x (Cx → Sx) a:3
├─
│ⓐ
│││Ca (4)
││├─

3 UI │││Ca → Sa 4
4 MPP│││Sa (6)
5 UI │││Sa → ∀y ((Py ∧ Lya) → Dy) 6
6 MPP│││∀y ((Py ∧ Lya) → Dy) (7)

│││●
││├─

7 QED│││∀y ((Py ∧ Lya) → Dy) 2
│├─

2 CP ││Ca → ∀y ((Py ∧ Lya) → Dy) 1
├─

1 UG │∀x (Cx → ∀y ((Py ∧ Lyx) → Dy))

Glen Helman 28 Aug 2008


