
7.5. General arguments

7.5.0. Overview

We have answered questions about entailment concerning truth-functional
compounds by turning them into questions about their immediate components
(or sentences contradictory to them). The largest component formulas of
sentences formed by quantifiers usually contain free variables, so we will look
at the sentences that are the result of putting closed terms in place of these
variables.

7.5.1. Conjunction and universal quantification 
An unrestricted universal sentence behaves like a conjunction of sentences
saying of each particular thing what the universal says of everything.

7.5.2. Instantiation 
The laws of entailment for unrestricted universals treat them as conjunctions
of their instances for particular things. However, a universal behaves like a
conjunction with indefinitely many conjuncts: it entails each of its instances
but cannot be replaced by them.

7.5.3. Generalization  
The instances of a universal are all predications of the same abstract, and this
makes it possible to establish a universal by way of a single “typical”
instance.

7.5.4. Adding instances 
Because a universal has indefinitely many instances, we cannot consider
each in a derivation. Instead, we exploit a generalization only partially to
extract those instances that are relevant to the argument we are considering.

7.5.5. General arguments in derivations  
To insure that we establish an instance of a universal in a way that admits
generalization, we construct it for a new term that is permitted only a limited
scope in the generalization.

7.5.6. Syllogisms  
The rules for the unrestricted universal enable us to establish, among other
things, the validity of arguments from a special class traditionally labeled
“syllogisms” (in a narrow sense of the term).
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7.5.1. Conjunction and universal quantification

The truth conditions of generalizations are analogous to those of conjunctions.
So, before looking at laws and rules for the universal quantifiers, we will spend
some time comparing these operations to conjunction.

Consider the pair of sentences analyzed below.

Every permanent member of the Security Council supported the resolution 
(∀x: Mxs) Sxl 

Britain, China, France, Russia, and the U. S. supported the resolution 
Sbl ∧ Scl ∧ Sfl ∧ Srl ∧ Sul

M: [ _ is a member of _ ]; S: _ supported _ ; b: Britain; c: China; f: France; l: the
resolution; r: Russia; s: the Security Council; u: the U. S.

These two sentences have the same truth value, but they are not equivalent
because in a different possible world the membership of the Security Council
could be different.

However, consider the sentence

Each of Britain, China, France, Russia, and the U. S. supported the resolution

This could be analyzed in the same way as the second sentence above, but it
could be analyzed also as a restricted universal whose restricting predicate is [ _
is Britain, China, France, Russia, or the U. S.]—switching to or here for the
same reasons that lead to us switch in handling all boys and girls (see 7.3.2). A
full analysis would give us the following:

(∀x: x=b ∨ x=c ∨ x=f ∨ x=r ∨ x=u) Sxl

And this universal is equivalent to the conjunction because either way we say
that the predicate [ _ supported l] is true of the reference values of b, c, f, r,
and u.

Each of the universals (∀x: ρx) θx and ∀x θx says that the predicate θ is true
of each value in the domain over which it generalizes. Only in special cases
(like the example just above) will either be equivalent to a conjunction

θτ  ∧ θτ  ∧ … ∧ θτ

that predicates θ of each of a series of terms. But it can still be enlightening to
compare universals to such conjunctions, so we will develop some vocabulary
for doing so. We will do this only for unrestricted universals since it is those
that we will focus on in derivations.

Let us say that an instance for a term τ of a universal ∀x θx is a sentence θτ
that applies the quantified predicate θ to τ—that is, an instance of a universal
∀x … x … has the form … τ …, the result of putting τ in place of the
occurrences of that variable x that are bound to the quantifier ∀x. An instance
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occurrences of that variable x that are bound to the quantifier ∀x. An instance
asserts of a single reference value what the universal asserts of everything in its
domain.

If every reference value is the extension of some term, an unrestricted
universal ∀x θx will be true if and only if each of its instances θτ is true. This
means that it will behave like a conjunction of these instances. But this is not to
say that we could work with such a conjunction in place of the universal
because, given just one unanalyzed term and one functor, there will be
infinitely many compound terms and infinitely many instances of any universal
whose quantifier actually binds a variable. For example, given an unanalyzed
term a and functor f, the language will contain the terms

a, fa, f(fa), f(f(fa)), …

and a universal ∀x Px will have the instances

Pa, P(fa), P(f(fa)), P(f(f(fa))), …

Although it is possible to make sense of infinite conjunctions if there is no
expectation that it be possible to write them down, our references to
conjunctions of all instances will be only a figure of speech used to motivate
and guide our treatment.

For an unrestricted universal to behave like a conjunction of its instances,
every reference value must be the value of some term. So let us develop the
figure of speech further by imagining that the ID of each reference value in a
range R is added as a further term of our language. We will speak of this
operation as expansion by R. If we expand the language by the range R of a
structure, an unrestricted universal ∀x θx will be true in that structure if and
only if all its instances are true.
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7.5.2. Instantiation

The special features of the laws of entailment we will state for the universals
can be traced to two sources. One is the analogy with conjunction we have just
explored. The other is a pair of differences between what we have said about
universals and what we may say about ordinary conjunctions.

The first difference lies in the fact that the principles of entailment for
universals must hold for all structures, so they cannot depend on special
assumptions about the range R of reference values. This means, in particular,
that the set of “components” of a universal (i.e., its instances in an expansion
by R) must be left indefinite while an ordinary conjunction has a definite and,
indeed, finite set of components. This would make universals difficult to deal
with were it not for their second difference from conjunctions. The components
of an ordinary conjunction can be any pair of sentences so they need have
nothing in common, and we must consider them individually; but the instances
of a universal all follow the same pattern, differing only in occurrences of a
single term, so we can speak of them all together by speaking of this pattern.
We will look at the effects of this second difference more closely in the next
subsection when we consider the role of universals as conclusions. For the
moment, we will concentrate on their role as premises.

We will develop laws for universals by taking certain laws for conjunctions
as our model and modifying them to take account of the differences just
outlined. In considering universals as premises, the laws for conjunction we
will work from are the following:

φ ∧ ψ ⇒ φ 
φ ∧ ψ ⇒ ψ

Although these principles are clearly associated with the rule of Extraction,
they are less far reaching than our law for conjunction as a premise. The fact
that we focus on them is due to the first difference between universals and
conjunction: the law for conjunction as a premise says we can replace a
conjunction by its components, but there is no hope of doing anything like this
for a universal since it has no one definite set of instances.

When taken together, these laws say that a conjunction implies each of its
components. The analogous claim about an unrestricted universal is that it
implies each of its instances. This is a principle known as universal
instantiation:

∀x θx ⇒ θτ for each term τ

Or, using an alternative notation, ∀x … x … ⇒ … τ … . For example, the
sentence Everything is fine and dandy implies the claim The weather is fine
and dandy as well as other sentences of the form τ is fine and dandy.



and dandy as well as other sentences of the form τ is fine and dandy.
The principle of universal instantiation is not quite what we will take as our

account of the unrestricted universal as a premise. Universal instantiation can
be used along with the law of lemmas to develop a derivation by adding any
instance of a universal premise as a further resource.

LAW FOR THE UNRESTRICTED UNIVERSAL AS A PREMISE. Γ, ∀x θx ⇒ φ if and only
if Γ, ∀x θx, θτ ⇒ φ (for any set Γ, sentence φ, predicate θ, and term τ)

Since the only if part of this claim follows from the monotonicity of
entailment, the key property of the universal lies in the if part: an argument
with a universal as a premise is valid if the result of adding an instance as a
further premise is valid. That is, when establishing the validity of an argument
with universal premise, we are free to add any instance as a further premise.
Note that the instance is added as a further premise. This is required for the
only if part to be true. We cannot drop the universal because we cannot expect
its content to be exhausted by a single instance; Everything is fine and dandy,
for example, has implications for things other than the weather. As you might
expect, our inability to drop the universal from the premises will some cause
complications when we try to implement this law in derivations.

We will not be considering derivations for restricted quantifiers in their own
right. Arguments involving them can be captured by way of their restatements
using unrestricted quantifiers, and the principles governing these quantifiers can
be derived directly from those governing the unrestricted quantifiers and the
conditional. For example, in the case of the restricted universal as a premise,
we have the following

Γ, (∀x: ρx) θx ⇒ ⊥ if and only if both Γ, (∀x: ρx) θx ⇒ ρτ and Γ, (∀x: ρx) θx, θτ ⇒ ⊥ 
Γ, (∀x: ρx) θx, ρτ ⇒ φ if and only if Γ, (∀x: ρx) θx, ρτ, θτ ⇒ φ 

Γ, (∀x: ρx) θx, ¬  θτ ⇒ φ if and only if Γ, (∀x: ρx) θx, ¬  ρτ, ¬  θτ ⇒ φ

The first is the key principle. It reflects aspects of the laws for unrestricted
universals and for conditionals as premises. It is from the latter that it derives
its restriction to reductio arguments. Notice that the two entailments on the
right show that the term τ refers to a counterexample to the derivation, with the
first showing that it is in the domain and the second reducing to absurdity the
claim that it has the attribute. The other two principles reflect aspects of the
modus ponens and modus tollens: if we know that τ refers to something in the
domain of a generalizaiton whose truth we are assuming, we can add the
assumption that this thing has the attribute and, if we know that it does not have
the attribute, we can add the assumption that it is not in the domain. In short,
there are three key ways to use a restricted universal assumption: to reduce to
absurdity any assumption that something is a counterexample, to show that

± ± ±

absurdity any assumption that something is a counterexample, to show that
something has its attribute (when it is assumed to be in the domain), and to
show that something is not in the domain (when it is assumed not to have the
attribute).
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7.5.3. Generalization

Next let us look at the role of an unrestricted universal as a conclusion. Here
we have the law for conjunction as a conclusion to use as a model.

Γ ⇒ φ ∧ ψ if and only if Γ ⇒ φ and Γ ⇒ ψ.

We have to expect changes, though, because that law gives separate
consideration to each of the two components of the conjunction and we cannot
expect to do this for the instances of a universal. Still, the law for conjunction
points us in the right direction: we should look for some way of connecting the
validity of a universal conclusion with the validity of arguments having its
instances as conclusions.

A connection like this is used in geometric proofs when we begin by saying,
for example, “Let ABC be a triangle,” and then go on to use our conclusions
concerning ABC to justify general conclusions about all triangles. That is, we
sometimes establish universal claims by generalizing from particular instances
of them.

Clearly not every generalization from a particular instance will be legitimate.
Certain premises may entail The Empire State Building is tall without
entailing Every building is tall. In a geometric argument concerning a triangle
ABC, we limit the information that we may use about the instance that we are
considering to what we may establish concerning any triangle. For example, we
ignore the fact we are using a diagram that shows ABC as acute or obtuse, and
we probably avoid drawing it as a right triangle or an isosceles triangle to begin
with. These restrictions are sometimes expressed by saying that we are arguing
about an arbitrary or an arbitrarily chosen triangle. The idea is that what you
say about the triangle ABC should hold for a triangle chosen at random or even
one chosen by your worst enemy. Let us call an argument like this a general
argument since it argues for an instance in a way that will hold generally for
values in the domain of a universal.

The law we are looking for should say that an unrestricted universal is a
valid conclusion from given premises if we can establish an instance of it by a
general argument. But we need to make this more precise. In particular, we
need to say how we can recognize a general argument just by looking at the
logical forms of the sentences it involves.

If we were to give instructions for making a general argument about a
triangle ABC, one thing we might say is that we should not use any special
assumptions about ABC. If we are going to generalize about triangles, we may
assume that ABC is a triangle but we should not assume that it is acute or
obtuse. This is just another way of saying that we should not use special
information about this triangle, but it suggests an idea we can apply to

information about this triangle, but it suggests an idea we can apply to
arguments when we know only their logical forms. Since we are considering
arguments for unrestricted universals, we must be able to generalize not just
about triangles, or some other limited class, but about everything; and that
means we should use no assumptions at all about the term from which we wish
to generalize. To insure that we do not use an special assumptions about a term
τ when we generalize from an instance θτ to a universal ∀x θx, we will require
that τ not appear in our assumptions. For reasons we will consider in 7.6.1, we
will require also that τ not appear in the predicate θ and that it be unanalyzed so
that it not only does not appear in the assumptions or θ but in fact shares no
vocabulary with them.

Even setting aside these further requirements, you may have noticed a couple
of jumps here. Saying we have an assumption containing τ is different from
saying we have used that assumption, and saying that τ appears in an
assumption is different from saying that the assumption provides special
information about τ. For example, The weather is fine and dandy and so is
everything else mentions the weather without constituting a special
assumption about it (since the same assumption is made about everything). Still,
the requirement that the term from which we generalize not appear in the
assumptions is easy to check and using it will not limit the entailments we can
establish, only the terms we can use to establish them.

These restrictions appear in our law stating the conditions under which a
universal can be validly concluded.

LAW FOR THE UNRESTRICTED UNIVERSAL AS A CONCLUSION. Γ ⇒ ∀x θx if and only
if Γ ⇒ θα (for any set Γ and predicate θ and any unanalyzed term α that
appears in neither Γ nor θ)

Let us say that an unanalyzed term appearing in neither the premises or
conclusion of an argument is independent with respect to that argument. In this
vocabulary, the law says that an argument with an unrestricted universal
conclusion is valid if and only if the premises entail an instance of the universal
for an independent term. When arguments are stated in English, phrases like let
α be arbitrary or let us choose α arbitrarily function as commitments to use
the term α as an independent term.

The crucial part of this law is the if claim since the only-if part says only
that a universal cannot be a valid conclusion unless any instance for an
independent term is also valid, something that follows from the principle of
universal instantiation. The key idea behind the truth of the if part is that,
because the independent term α is unanalyzed and does not appear in either Γ
or θ, it could be made to refer to anything without affecting the premises Γ or



or θ, it could be made to refer to anything without affecting the premises Γ or
the predicate θ. And this means that, if the premises suffice to entail θα, they
suffice to show that θ is true of everything—i.e., that the universal ∀x θx is true.
Indeed, given a proof of θα from the premises Γ, we could construct a proof of
θτ for any term τ simply by replacing every occurrence of α by τ, our
restrictions on α insuring that the premises Γ and θ remain unchanged and that
α had no ties to them that are not shared by τ.

This argument recalls the comparison of the universal with conjunction.
Since a conjunction can have any components, we must argue for each
component individually and, since a conjunction has only two components,
there is nothing to keep us from doing this. On the other hand, there would be
no hope of providing a separate argument for each instance of a universal
since, in general, there is no way of setting a limit on the number of instances it
has. However, there is no need to consider each of these instances individually
since they all have the same form, so an argument establishing an instance for
one independent term can set the pattern for all of the rest.

A principle for the restricted universal as a conclusion follows from this law
and the law for the conditional as a conclusion:

Γ ⇒ (∀x: ρx) θx if and only if Γ, ρα ⇒ θα (where α is unanalyzed and does not
appear in Γ, ρ, or θ)

That is, we can establish a restricted generalization by showing that an
arbitrarily chosen object has the attribute when we assume that it is in the
domain.
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7.5.4. Adding instances

The implementation of the laws for universal quantifiers is fairly
straightforward if we use derivations only in a positive way—i.e., use them
only to show that entailments hold. Their use to show that entailments fail will
be postponed until 7.7. We will consider only the unrestricted universal. Rules
for restricted universals present no special difficulties and, indeed, can be seen
as simply abbreviations for combinations of rules for the unrestricted universal
and the conditional.

The exploitation rule for universals, which we will call Universal Instantiation
(UI), is shown in Figure 7.5.4-2. It can be used to add any instance of the
universal as a further resource, notating the universal to indicate the term for
which an instance was added.

│⋯
│∀x … x …
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│∀x … x … τ:n
│⋯
││⋯

n UI││… τ …
││
│├─
││φ
│⋯

Fig. 7.5.4-2. Developing a derivation at stage n by exploiting an
unrestricted universal for a term τ.

Although we record the use of this rule alongside the universal, the universal
resource is not rendered completely inactive. The rule provides only a partial
exploitation, extracting the content of the universal only for the single term τ.
Since a universal does not bring with it any definite set of instances, it will
never be rendered completely inactive, no matter how often this rule is used.
Still, one use of the rule does exploit the universal for one term, and we record
this by noting both the stage number and the term for which the universal has
been exploited.

This information is used (much in the way we have used marking by stage
numbers) to judge when a universal is active for a given term. To be active for
a given term in a gap, a universal must be available in the gap and must not
have been exploited for the term in the course of narrowing the gap.
Specifically, an available universal is inactive for τ in a gap if it is marked by a
pair τ:n and all scope lines to the left of some resource or goal entered at stage
n continue unbroken to the left of the gap. Although an available universal is
always active, it may not be active for all terms; and a term for which we apply
the exploitation rule above should be one for which the universal is still active.



As we will see in 7.7.4, it is legitimate to limit the use of this rule to terms
appearing in the available resources and goals the gap. These are the same
terms from which we form alias sets and it will be enough to exploit a
universal for at least one term from each alias set. But, occasionally, no terms
will appear in the initial premises and conclusion and none will be introduced
by other rules. When this is so, the exploitation rule above may be used to
introduce a new unanalyzed term into the derivation.

For example, the premises and conclusion of the following derivation above
contain no terms at all, so there would be no way of beginning it if we did not
instantiate one of them for a new term.

│∀x Fx a:1
│∀x ¬ Fx a:2
├─

1 UI │Fa (3)
2 UI │¬ Fa (3)

│●
├─

3 Nc│⊥
This is the only sort of case in which instances need be added for terms new to
the gap being developed. The fact that we do so at all reflects the assumption
built into our system that there is at least one reference value. The derivation
above shows one consequence of this assumption—namely, that Everything is
finished and Everything is unfinished are inconsistent. Clearly, if there is
anything at all, then these two sentences cannot both be true. On the other hand,
if we were to drop the assumption that there is something, both sentences could
be true. For generalizations are false only when they have counterexamples;
and, in a world in which there was nothing, there would be nothing to serve as
a counterexample to either Everything is finished or Everything is
unfinished. The assumption that there is something is perhaps the only
assumption typically regarded as part of deductive logic that might be regarded
as factual.

At the other extreme, use of this rule in case of generalizations containing
functors may introduce new terms into the derivation, leading to new uses of
the rule. For example, instantiating ∀x P(fx) for the term a will give us P(fa),
which contains the term fa, and we may use this term also to instantiate the
generalization, giving us P(f(fa)), which contains the term f(fa)—and so on. As
we will see in 7.7, this is one aspect of a general feature of the deductive logic
for generalizations that will sometimes keep a derivation from ever reaching an
end. That is not our concern now, but the possibility of going on forever in the
application of rules shows that we can no longer wait to apply rules fully before
checking to see if a gap closes. And, because a large number of applications of
instantiation may be possible, it is wise to select from among the terms with

instantiation may be possible, it is wise to select from among the terms with
which we might instantiate a generalization those that seem most likely to help
us close a gap.

The following derivation keeps universal instantiation to a minimum. Only
the main quantifier is removed with each use of UI, so three uses are required
to reach the bare predication Rabc. Only two more are needed to reach Racc but
three would have been required to reach a second predication, such as Rccc,
that had a different term in the first place after R.

│∀x ∀y ∀z Rxyz a:1
├─

1 UI │∀y ∀z Rayz b:2, c:4
2 UI │∀z Rabz c:3
3 UI │Rabc (6)
4 UI │∀z Racz c:5
5 UI │Racc (6)
6 Adj │Rabc ∧ Racc (7)

│●
├─

7 QED│Rabc ∧ Racc
On the other hand, a full use of instantiation for the terms appearing in the
conclusion would have lead to 3 + 3×3 + 3×9 = 39 uses of UI (i.e., three to
exploit the premise for a, b, and c, three more exploitations for each of the three
resources that result, and finally three more for each of the nine resources
added in that way). A derivation is not damaged by extra uses of UI any more
than it is damaged by using Ext to add conjuncts that are not needed later. But,
while adding all conjuncts as resources whenever a conjunction was exploited
presented no practical problem, using UI in all ways possible can lead to
unmanageably large derivations in the case of even fairly simple premises.
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7.5.5. General arguments in derivations

In order to manage general arguments in our system of derivations, we need a
further sort of scope line. The portion of a derivation that constitutes a general
argument will be marked by a scope line that is flagged by the independent term
on which we generalize (as shown in Figure 7.5.5-1).

│⋯
│ⓐ
││
││⋯
││
│⋯

Fig. 7.5.5-1. A veil of ignorance flagged by the independent term a.

This flagging declares that the term is independent. Indeed, we will require that
a term flagging a scope line appear only to its right, so the scope line will mark
the scope of the term’s use. In either form, the requirement is designed to
insure that the independent term maintains no ties to the outside of the general
argument so that, within the argument, it might refer to anything at all. For this
reason, we will speak of a scope line flagged by a term as a veil of ignorance.

The limitation of the appearance of the independent term to the portion of
the derivation marked by its scope line is more than is necessary to stay in
accord with the laws for universals as conclusions. They require only that the
term not appear in either the goal or the active resources of the gap that the
vertical line spans, but we will never run short of terms and the stronger
requirement is far easier to check.

Now, let us look at the planning rule for universal goals. It is known as
Universal Generalization (UG) and is shown in 7.5.5-2.

│⋯
││⋯
││
││
││
││
│├─
││∀x … x …
│⋯

→

│⋯
││⋯
││ⓐ
│││
││├─
│││… a … n
│├─

n UG││∀x … x …
│⋯

Fig. 7.5.5-2. Developing a derivation at stage n by planning for an
unrestricted universal; the independent term a may be any unanalyzed

term that is new to the derivation.

We try to reach our goal by a general argument, so we choose as our
independent term an unanalyzed term a that is new to the derivation. An
instance of ∀x θx for the term a is the goal of the general argument, and further
development of the gap lies on the other side of a veil of ignorance concerning

development of the gap lies on the other side of a veil of ignorance concerning
that independent term.

The short derivation shown below illustrates this rule. It shows that, if a
relation R is universal in the sense of holding of any pair of things, then it is
reflexive.

│∀x ∀y Rxy a:2
├─
│ⓐ

2 UI ││∀y Ray a:3
3 UI ││Raa (4)

││●
│├─

4 QED││Raa 1
├─

1 UG │∀x Rxx
At the initial stage here, there is no vocabulary from which a term may be
formed—and UI should be used to introduce new terms only as a last resort—
so we apply the planning rule to the universal conclusion. After applying it, we
have vocabulary for use with the exploitation rule, and we apply it twice for the
term a. It would have been legitimate to exploit either universal resource for
any other term τ as well, but that would not have contributed to closing the
gap.

The following derivation illustrates the limitations on the scope of a term.
│∀x Rax c:2
│∀x ∀y (Rxy → ∀z Ryz) a:3
├─
│ⓒ

2 UI ││Rac (5)
3 UI ││∀y (Ray → ∀z Ryz) c:4
4 UI ││Rac → ∀z Rcz 5
5 MPP││∀z Rcz b:6
6 UI ││Rcb (7)

││●
│├─

7 QED││Rcb 1
├─

1 UG │∀x Rxb
The independent term used here could not have been either a or b since both
appear beyond the scope line of the general argument, one in a premise and the
other in the conclusion.

The derivation shown here minimizes the use of UI, and the particular choice
of instances needed to do this might not be obvious. Once the first premise is
instantiated for c, the next two instantiations are designed to set up the use of
MPP at stage 5; but that c is a better choice at stage 2 than, say, b is probably
less obvious. It is fine to experiment, and there is no need to back up if you do
not make the best choice. A derivation is never damaged by extra uses of UI;
and, when we go on to use derivations to show the failure of entailments
involving generalizations in 7.7, we will require that, before a derivation can



involving generalizations in 7.7, we will require that, before a derivation can
reach a dead end, any universal resource must be exploited for at least term
from each alias set.
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7.5.6. Syllogisms

We can now establish the validity of the forms of argument that are syllogisms
in the narrower of the traditional senses of the term. Syllogisms in this sense
are two-premised arguments whose component sentences are analyzed as
restricted generalizations or their denials with quantified and restricting
predicates that are unanalyzed. A syllogism must contain exactly three such
predicates, and each of these predicates must appear in exactly two of the
component sentences. The generalizations that are asserted or denied in the
premises and conclusion can be affirmative or negative but all must be direct.

The constraints on predicates leave four possible figures distinguished by
whether each of restricting or quanitified predicates of the conclusion appears
in the same or different role in the premise in which it also appears. For each
choice of figure, there are 4 × 4 × 4 = 64 moods reflecting the choice of a form
of sentence (an assertion or denial of an affirmative or negative generalization).
There are thus 256 syllogisms; and, of these, 15 are valid. This number is small
enough that they could all be named. These names were constructed to display
the mood of the syllogism in their choice of vowels and, in some of their
consonants, ways of establishing the validity of some syllogisms on the basis of
others.

Below is a derivation for the best known of these patterns. The name of this
syllogism, Barbara, is one of the few that does not sound like the artificial
construction it is.

│∀x (Mx → Qx) a:5
│∀x (Rx → Mx) a:3
├─
│ⓐ
│││Ra (4)
││├─

3 UI │││Ra → Ma 4
4 MPP│││Ma (6)
5 UI │││Ma → Qa 6
6 MPP│││Qa (7)

│││●
││├─

7 QED│││Qa 2
│├─

2 CP ││Ra → Qa 1
├─

1 UG │∀x (Rx → Qx)
The letters chosen for predicates in the analysis are designed to highlight the
figure. Notice that the restricting and quantified predicates of the conclusion (R
and Q) play the same roles when they appear in the premises. The thrid
predicate (M) is traditionally known as the middle term. An example is All
humans are mortal, All philosophers are human ⇒ All philosophers are
mortal.



mortal.
Middle terms do not always stand between the other two in the range of their

application (as does human between philosopher and mortal); but, in all valid
syllogisms, the middle term provides the basis for the relation between the
other two predicates asserted in the conclusion and thus stands between them in
this sense.

This derivation also provides an example of the form that will be taken by
arguments involving restricted universals when they are reformulated using
unrestricted quantifiers. Were we to have special rules for restricted universals,
one kind of exploitation rule would have the effect of the sort of combination
of UI and MPP seen in stages 3 and 4 and again in stages 5 and 6 above. The
planning role for a restricted universal goal would have the effect of the sort of
combination of UG and CP in stages 1 and 2; in short, it would introduce a
general argument with a supposition that predicated the restricting predicate of
the generalization to the independent term and a goal that predicated the
quantified predicate.
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7.5.s. Summary

The universal quantifiers and conjunction may both be used to say that each
of a group of claims is true. This overlap in function indicates an analogy
between these logical constants that can be seen also in the laws of
entailment for them. The analogue to a component of a conjunction is an
instance of a universal, in which the universal’s quantified predicate is
predicated a term. A universal is rarely equivalent to an actual conjunction of
its instances, but for a given referential range R, it behaves like a possibly
infinite conjunction of instances in a language enriched by adding the IDs of
all values in R—i.e., it behaves like the conjunction of its instances in an
expansion of the language by R. When we do not fix the range R, a
universal ∀x θx is not associated with any definite set of instances, but we
still know that its instances θτ are all predications of θ; and these two
features are reflected in the laws of entailment for universals.

In the case of an unrestricted universal, we can state a principle of universal
instantiation , which says that the universal implies each of its instances; and
we may use this with the law for lemmas to get a law for this sort of
universal as a premise.

We can describe the role of an unrestricted universal as a conclusion by
using the idea of a general argument , in which an instance of a
generalization is established in such a way that we may generalize from it to
a universal claim. It is sufficient for an argument to be a general one that the
term for which the instance is given not be compound, that it not appear in
the premises, and that it not appear in the generalization we wish to
conclude. Such a term is an independent term with respect to the argument.
The law for the unrestricted conditional as a conclusion then tells us that we
can conclude a universal from given premises when we can conclude an
instance of it for an independent term.

The rule for exploiting universal resources—Universal Instantiation (UI)—
should be used only for terms already appearing in the gap—provided there
is at least one such term. The exploitation of universals can never be
considered complete, and an available universal resource is always an active
resource; but exploitation rules do render universals inactive for particular
terms and should be applied only to terms for which the universal remains
active.

In implementing the laws for universals as conclusions, we flag scope lines
by terms that are being used as independent terms; such terms can appear
only to the right of their scope lines. We plan for an unrestricted universal
goal by planning to use the rule Universal Generalization (UG). It directs us
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goal by planning to use the rule Universal Generalization (UG). It directs us
to set up a flagged scope line with an instance for the independent term as a
new goal.

In its narrowest use, the term syllogism  refers to one of a group of 256
logical forms of two-premised arguments involving generalizations and their
denials. A syllogism is tranditional classified according to the roles in the
premises of restricting and quantified predicates of the conclusion (its figure)
and the logical form of each of the premises and conclusion (its mood). A
syllogism contains one further predicate, the middle term, that, in a valid
syllogism, provides the link between the predicates in the conclusion. The
best known syllogism, named Barbara, is the only valid syllogism whose
premises each assert an affirmative generalization.
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7.5.x. Exercise questions

1. Give the instances of each of the following for the terms a, b, and c
(remembering that you will drop the main quantifier, and only the main
one, when giving an instance):

 a. ∀x Fx
 b. ∀y Fy
 c. ∀x Rxa
 d. ∀x Saxb
 e. ∀x ∀y Rxy
 f. ∀x (Fx → Gx)
 g. ∀x (Fx → Gd)
 h. ∀x (Fx → ∀y Rxy)
 i. ∀x (Fx → ∀x Rxx)
2. Use the system of derivations to establish each of the following. You may

use detachment and attachment rules.
 a. ∀x Fx, ∀x (Fx → Gx) ⇒ Ga
 b. ∀x (Fx ∧ Gx) ⇒ Fa ∧ Gb
 c. ∀x Rxa, ∀x (Rbx → Gx) ⇒ Ga
 d. ∀x ∀y Rxy, ∀x (Rxx → Gx) ⇒ Ga
 e. ∀x ∀y Rxy ⇒ (Rab ∧ Rbb) ∧ Rca
 f. ∀x Fx, ∀x (Fx → Gx) ⇒ ∀x Gx
 g. ∀x (Fx ∧ Gx) ⇔ ∀x Fx ∧ ∀x Gx
 h. Fa ⇔ ∀x (x = a → Fx)
 i. ∀x ∀y Rxy ⇒ ∀y Rya
 j. ∀x ∀y (Rxy → ¬ Ryx) ⇒ ∀x ¬ Rxx
 k. ∀x ∀y (gx = y → Fy) ⇒ ∀x F(g(hx))
3. In the following, certain alternative expressions are enclosed in brackets

and separated by vertical bars. Choose one of each alternative pair of
premises and one of each alternative pair of words or phrases in the
conclusion so as to make a valid argument; then analyze the premises and
conclusion and construct a derivation to show that the argument is valid.
You may use detachment and attachment rules.

 a. Every road sign was colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]

[If anything was red, it was colored | If anything was colored, it
was painted]

Every [stop sign | traffic marker] was [red | painted]



 b. No road sign was colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]

[If anything was red, it was colored | If anything was colored, it
was painted]

No [stop sign | traffic marker] was [red | painted]

 c. Only road signs were colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]

[If anything was red, it was colored | If anything was colored, it
was painted]

Only [stop signs | traffic markers] were [red | painted]

 d. Among road signs all except colored ones were replaced
[Every stop sign was a road sign | Every road sign was a traffic

marker]

[If anything was red, it was colored | If anything was colored, it
was painted]

Among [stop signs | traffic markers] all except [red | painted]

ones were replaced

For more exercises, use the exercise machine .

Glen Helman 28 Aug 2008

7.5.xa. Exercise answers

1.    instance for a instance for b instance for c
a. ∀x Fx  Fa  Fb  Fc
b. ∀y Fy  Fa  Fb  Fc
c. ∀x Rxa  Raa  Rba  Rca
d. ∀x Saxb  Saab  Sabb  Sacb
e. ∀x ∀y Rxy  ∀y Ray  ∀y Rby  ∀y Rcy
f. ∀x (Fx → Gx)  Fa → Ga  Fb → Gb  Fc → Gc
g. ∀x (Fx → Gd)  Fa → Gd  Fb → Gd  Fc → Gd
h. ∀x (Fx → ∀y Rxy) Fa → ∀y Ray  Fb → ∀y Rby Fc → ∀y Rcy
i. ∀x (Fx → ∀x Rxx) Fa → ∀x Rxx  Fb → ∀x Rxx Fc → ∀x Rxx

2. a. │∀x Fx a:1
│∀x (Fx → Gx) a:2
├─

1 UI │Fa (3)
2 UI │Fa → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga
 b. │∀x (Fx ∧ Gx) a:1, b:3

├─
1 UI │Fa ∧ Ga 2
2 Ext │Fa (5)
2 Ext │Ga
3 UI │Fb ∧ Gb 4
4 Ext │Fb
4 Ext │Gb (5)
5 Adj │Fa ∧ Gb (6)

│●
├─

6 QED│Fa ∧ Gb
 c. │∀x Rxa b:1

│∀x (Rbx → Gx) a:2
├─

1 UI │Rba (3)
2 UI │Rba → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga



 d. │∀x ∀y Rxy a:1
│∀x (Rxx → Gx) a:3
├─

1 UI │∀y Ray a:2
2 UI │Raa (4)
3 UI │Raa → Ga 4
4 MPP│Ga (5)

│●
├─

5 QED│Ga
 e. │∀x ∀y Rxy a:1, b:3

├─
1 UI │∀y Ray b:2
2 UI │Rab (5)
3 UI │∀y Rby b:4, a:6
4 UI │Rbb (5)
5 Adj │Rab ∧ Rbb X, (7)
6 UI │Rba (7)
7 Adj │(Rab ∧ Rbb) ∧ Rba X, (8)

│●
├─

8 QED│(Rab ∧ Rbb) ∧ Rba
 f. │∀x Fx a:2

│∀x (Fx → Gx) a:3
├─
│ⓐ

2 UI ││Fa (4)
3 UI ││Fa → Ga 4
4 MPP││Ga (5)

││●
│├─

5 QED││Ga 1
├─

1 UG │∀x Gx
 g. │∀x (Fx ∧ Gx) a:3,b:7

├─
││ⓐ

3 UI │││Fa ∧ Ga 4
4 Ext │││Fa
4 Ext │││Ga (5)

│││●
││├─

5 QED│││Fa 2
│├─

2 UG ││∀x Fx 1
│
││ⓑ

7 UI │││Fb ∧ Gb 8
8 Ext │││Fb
8 Ext │││Gb (9)

│││●
││├─

9 QED│││Gb 6
│├─

6 UG ││∀x Gx 1
├─

1 Cnj │∀x Fx ∧ ∀x Gx

 │∀x Fx ∧ ∀x Gx 1
├─

1 Ext │∀x Fx a:3
1 Ext │∀x Gx a:4

│ⓐ
3 UI ││Fa (5)
4 UI ││Ga (5)
5 Adj ││Fa ∧ Ga X, (6)

││●
│├─

6 QED││Fa ∧ Ga 2
├─

2 UG │∀x (Fx ∧ Gx)

  Reusing the term a as the independent term of the second general argument of
the derivation on the left would have caused no logical problems since the two
gaps are separate arguments boxed off from on another; however, we will hold
to the simplest interpretation of the scope line and not allow terms flagging
scope line to appear anywhere outside their indicated scope.

 h. │Fa (3)
├─
│ⓑ
│││b = a a—b
││├─
│││●
││├─

3 QED=│││Fb 2
│├─

2 CP ││b = a → Fb 1
├─

1 UG │∀x (x = a → Fx)

 │∀x (x = a → Fx) a:2
├─
││¬ Fa (3)
│├─

2 UI ││a = a → Fa 3
3 MTT││¬ a = a (4)

││●
│├─

4 DC ││⊥ 1
├─

1 IP │Fa

 i. │∀x ∀y Rxy b:2
├─
│ⓑ

2 UI ││∀y Rby a:3
3 UI ││Rba (4)

││●
│├─

4 QED││Rba 1
├─

1 UG │∀y Rya
Here the term a cannot be used as the independent term of the general
argument because it already appears in the conclusion.

 j. │∀x ∀y (Rxy → ¬ Ryx) a:3
├─
│ⓐ
│││Raa (5), (6)
││├─

3 UI │││∀y (Ray → ¬ Rya) a:4
4 UI │││Raa → ¬ Raa 5
5 MPP│││¬ Raa (6)

│││●
││├─

6 Nc │││⊥ 2
│├─

2 RAA││¬ Raa 1
├─

1 UG │∀x ¬ Rxx
 k. │∀x ∀y (gx = y → Fy) ha:2

├─
│ⓐ

2 UI ││∀y (g(ha) = y → Fy) g(ha):3
3 UI ││g(ha) = g(ha) → F(g(ha)) 5
4 EC ││g(ha) = g(ha) X, (5)
5 MPP││F(g(ha)) (6)

││●
│├─

6 QED││F(g(ha)) 1
├─

1 UG │∀x F(g(hx))
Every road sign was colored 



3. a. Every road sign was colored 
Every stop sign was a road sign 
If anything was colored, it was painted
Every stop sign was painted

  │∀x (Dx → Cx) a:5
│∀x (Sx → Dx) a:3
│∀x (Cx → Px) a:7
├─
│ⓐ
│││Sa (4)
││├─

3 UI │││Sa → Da 4
4 MPP│││Da (6)
5 UI │││Da → Ca 6
6 MPP│││Ca (8)
7 UI │││Ca → Pa 8
8 MPP│││Pa (9)

│││●
││├─

9 QED│││Pa 2
│├─

2 CP ││Sa → Pa 1
├─

1 UG │∀x (Sx → Px)
 b. No road sign was colored 

Every stop sign was a road sign 
If anything was red, it was colored
No stop sign was red

  │∀x (Dx → ¬ Cx) a:5
│∀x (Sx → Dx) a:3
│∀x (Rx → Cx) a:7
├─
│ⓐ
│││Sa (4)
││├─

3 UI │││Sa → Da 4
4 MPP│││Da (6)
5 UI │││Da → ¬ Ca 6
6 MPP│││¬ Ca (8)
7 UI │││Ra → Ca 8
8 MTT│││¬ Ra (9)

│││●
││├─

9 QED│││¬ Ra 2
│├─

2 CP ││Sa → ¬ Ra 1
├─

1 UG │∀x (Sx → ¬ Rx)
 

Only road signs were colored 

 c. Only road signs were colored 
Every road sign was a traffic marker 
If anything was red, it was colored
Only traffic markers were red

  │∀x (¬ Dx → ¬ Cx) a:5
│∀x (Dx → Mx) a:3
│∀x (Rx → Cx) a:7
├─
│ⓐ
│││¬ Ma (4)
││├─

3 UI │││Da → Ma 4
4 MTT│││¬ Da (6)
5 UI │││¬ Da → ¬ Ca 6
6 MPP│││¬ Ca (8)
7 UI │││Ra → Ca 8
8 MTT│││¬ Ra (9)

│││●
││├─

9 QED│││¬ Ra 2
│├─

2 CP ││¬ Ma → ¬ Ra 1
├─

1 UG │∀x (¬ Mx → ¬ Rx)
 

 d. Among road signs, all except colored ones were replaced 
Every stop sign was a road sign 
If anything was colored, it was painted
Among stop signs, all except painted ones were replaced

  │∀x ((Dx ∧ ¬ Cx) → Lx) a:8
│∀x (Sx → Dx) a:4
│∀x (Cx → Px) a:6
├─
│ⓐ
│││Sa ∧ ¬ Pa 3
││├─

3 Ext │││Sa (5)
3 Ext │││¬ Pa (7)
4 UI │││Sa → Da 5
5 MPP │││Da (9)
6 UI │││Ca → Pa 7
7 MTT │││¬ Ca (9)
8 UI │││(Da ∧ ¬ Ca) → La 10
9 Adj │││Da ∧ ¬ Ca X, (10)
10 MPP│││La (11)

│││●
││├─

11 QED│││La 2
│├─

2 CP ││(Sa ∧ ¬ Pa) → La 1
├─

1 UG │∀x ((Sx ∧ ¬ Px) → Lx)
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