
2.4. Using lemmas
2.4.0. Overview

Although our system of derivations as it stands is both sound and
complete, we will add rules that reflect the use of lemmas, both because
of the importance of lemmas in ordinary explicit deductive reasoning
and because the sorts of organization and simplification they provde in
that context are of value here, too.

2.4.1. The dangers of lemmas
Although the use of lemmas is valuable in general, not all individual
lemmas are valuable: the uncontrolled use of lemmas can lead us into
blind alleys or delay the progress of a derivation.

2.4.2. Lemmas for reductio arguments
A lemma that is entailed by our goal is safe (though not necessarily
progressive); this means that any lemma is safe when the goal is ⊥.

2.4.3. Attachment rules
Lemmas are, of course, safe when we know we can prove them. We
will use such lemmas to add to the available resources. The sentences
added will generally be more complex than those already present, so
this use of lemmas can interfere with decisiveness.

Glen Helman 28 Aug 2008

2.4.1. The dangers of lemmas

A fully general rule for introducing lemmas was cited in 2.3.2 as an
example of an unsafe rule because argument from our resources to the
lemma might fail even though the proximate argument of the gap was
valid. Such would also prevent a system from being decisive because it
would always be possible to develop a gap further by introducing a
lemma. However, as was noted earlier, more limited rules for
introducing lemmas can be safe, and we will see that they can also be
progressive. In this section we will look at the problems posed by
lemmas more closely before consider a couple of special cases where
they do not arise.

The law for lemmas of 1.4.7 can be stated as follows:

Γ ⇒ φ if both Γ ⇒ ψ and Γ, ψ ⇒ φ

Any possible world that is a counterexample to the first entailment will
be a counterexample to one of the two on the right—the first of them if
it makes ψ false and the second if it makes it true. So if both
entailments on the right hold (that is, neither has a counterexample),
then the one on the left will hold, too.

But this principle holds only as an if claim; the corresponding only if
does not hold in all cases. When Γ ⇒ φ, we know that Γ, ψ ⇒ φ by the
monotonicity of ⇒ ; but, since φ and ψ need have no connection with
one another, knowing that Γ ⇒ φ would by itself give us no reason to
suppose that Γ ⇒ ψ. Of course, in a case where we know that φ ⇒ ψ, we
would know Γ ⇒ ψ because of the chain law , and there are other cases
where would know Γ ⇒ ψ because of special connections between Γ and
ψ. These are the two sorts of cases in which we will use lemmas but,
before turning to them, let’s look at what a fully general rule for lemmas
would be like.

If used in tree-form proofs a rule for lemmas would take the following
form:

 ψ
 ψ φ

Lem
 φ

Here the proof of φ divides into two branches. The first is a proof of the
lemma ψ and the second is a proof of φ using ψ in addition to the
already available assumptions and conclusions derived from them. The
box around the right-hand branch is intended to indicate that the use of
ψ is limited to that part of the proof and ψ’s presence at the upper left is

ψ is limited to that part of the proof and ψ’s presence at the upper left is
intended to indicate that it is available for this branch as a further
assumption from which we may begin chains of conclusions.

In the notation of derivations, we use scope lines to mark the scope of
added assumptions, which are marked off from other resources along a
scope line by the sort of horizontal line we use to indicate the premises
of the ultimate argument.

│⋯
│
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│⋯

→

│⋯
│
││⋯
││
│││
│││
││├─
│││ψ n
││
│││ψ
││├─
│││
│││
││├─
│││φ n
│├─

n Lem││φ
│⋯

Fig. 2.4.1-1. Developing a derivation by introducing a lemma at stage n
(a rule that will be part of our systems of derivations only in more

restricted forms).

The assumption ψ is available only as long as the second of the two short
scope lines continues, so it is effectively boxed off in derivations just as
it is in the rule above for tree-form proofs.

The second of the two new gaps should be, if anything, easier to close
than the original gap because it has a further resource. This increased
ease is the point of introducing a lemma. The price we pay for this is the
need to close the first new gap also. If the lemma is properly chosen,
that may also be easier than closing the original gap; but, because this
rule is unsafe, we cannot be sure in general that the first new gap can be
closed at all even if the original one can be in other ways. Because of
this, when lemmas are introduced in ordinary deductive reasoning we
must be prepared to backtrack, to abandon the attempt to work by way
of the lemma and look for another approach to the proof. The notation
of derivations is not designed to incorporate backtracking, so we will use
lemmas only in cases where we can be sure there will be no need to do
that.

Even in cases where we can sure backtracking is not necessary the
introduction of lemmas can interfere with decisiveness because there
may be enough safe lemmas to keep introducing them forever. So our
restrictions on the use of the rule Lem will be more severe than would
be required merely to insure that the lemma it introduces is safe.
Indeed, we will not incorporate the rule in the general form given here
into our system of derivations at all. Instead, we will employ more
specific rules that are based on the idea behind it.

Glen Helman 28 Aug 2008

2.4.2. Lemmas for reductio arguments

We have seen that a lemma is bound to be safe if it is entailed by the
goal we seek. That is, we can state following principle:

if φ ⇒ ψ, then an interpretation divides Γ from φ if and only if either
if it divides Γ from ψ or it divides Γ together with ψ from φ

This tells us that when φ ⇒ ψ, it is both sound and safe to introduce a
lemma ψ in a derivation whose goal is φ.

In order to apply this idea, we can look for appropriate choices of φ
and ψ in valid single-premised arguments. The obvious arguments
among those we have identified so far are EFQ and the two forms of
Ext. Although EFQ will prove to be the more important, Ext is a better
source of examples at the moment and we will consider it first. Here is a
derivation which uses the rule Lem to introduce a lemma that is the
result of applying left Ext to the final goal.

 │A ∧ B 1
 ├─
1 Ext │A (5),(9)
1 Ext │B (4)
 │
 │││●
 ││├─
4 QED │││B 3
 ││
 │││●
 ││├─
5 QED │││A 3
 │├─
3 Cnj ││B ∧ A 2
 │
 ││B ∧ A (7),(10)
 │├─
 │││●
 ││├─
7 QED │││B ∧ A 6
 ││
 ││││●
 │││├─
9 QED ││││A 8
 │││
 ││││●
 │││├─
10 QED││││B ∧ A 8
 ││├─
8 Cnj │││A ∧ (B ∧ A) 6
 │├─
6 Cnj ││(B ∧ A) ∧ (A ∧ (B ∧ A)) 2
 ├─
2 Lem │(B ∧ A) ∧ (A ∧ (B ∧ A))

Here the rule Lem is applied at stage 2 with the left component of the
goal as the lemma. This yields a slight shortening of the derivation since
we are able to use the lemma to conclude B ∧ A by QED at stages 7 and
9 rather than repeating the proof used at stages 3-5 twice.

The simplification here is slight and it occurs at all only because of a
repetition in the goal that we would not expect to encounter often.
While we would have more opportunities to use this sort of lemma in
later chapters, there would not be enough to lead us to introduce a
special rule and this will serve us only as an initial example. It is worth
remembering, however, that it is legitimate pattern of deductive
reasoning to conclude one of the two components of a conjunction and
then use that component to conclude the other (as we here have used
the lemma B ∧ A in concluding A ∧ (B ∧ A)).

The pattern Ex Falso Quodlibet provides the basis for a much more
imporant use of lemmas. An argument whose conclusion is ⊥ is often
called a reductio argument; reductio here is short for the Latin phrase
reductio ad absurdum (‘reduction to absurdity’). We will often need to
use a lemma to complete such an argument and, since EFQ tells us that
⊥ entails any sentence, we know that any lemma we choose is safe. We
will call the rule implementing this idea Lemma for Reductio or LFR:

│⋯
│
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││⊥
│⋯

→

│⋯
│
││⋯
││
│││
│││
││├─
│││φ n
││
│││φ
││├─
│││
│││
││├─
│││⊥ n
│├─

n LFR││⊥
│⋯

Fig. 2.4.2-1. Developing a derivation by introducing a lemma for a
reductio at stage n.

We know this is safe from earlier arguments, but it is also easy to see
that directly. Any interpretation that divided either of the new gaps
would certainly have to make all active resources of the original gap
true; but an interpretation that did that would divide the original gap
since its goal ⊥ is bound to be false. So neither of the two new gaps
divided unless their parent was.

While this rule is certainly important, we are not yet in a position to
illustrate it because, as yet, we have no non-trivial examples of formally
valid reductio arguments. A reductio is formally valid only if its

valid reductio arguments. A reductio is formally valid only if its
premises constitute a formally inconsistent set (that is, one whose
members cannot be all true on any extensional interpretation) and the
only formally inconsistent sets available with our current analyses of
sentences contain ⊥ either as a premise or as a component of one. And
such set a can be shown to entail ⊥ with use of nothing but Ext and
QED. This situation will change in the next chapter but, even there, our
chief use of lemmas will be in a special modified version of this rule that
is designed to actually exploit resources.

That rule will be direct but rules that introduce lemmas usually will
not be and, in order to be sure a system employing them was decisive
we would need to show that they could be considered progressive (on
the right measure of distance from the end). The use of Lem to
introduce a component of the goal can be regarded as progressive
provided we require that the lemma is not already an active resource.
But the free use of LFR would undermine decisiveness even if we forbid
such repetition since the form of the rule places no constraints on the
number of different lemmas that might be introduced. Something like a
limitation to components of active resources and goals would be
sufficient but more minimal restrictions would also work. In general, we
will not attempt to formulate the sort of restriction that would enable us
to prove decisiveness for a system with LFR. The value of the rule is a
practical one and in practice the constraint of good sense in its use is
restrictive enough.

Glen Helman 28 Aug 2008

2.4.3. Attachment rules

When discussing the minimal soundness of QED in 2.3.2 , we saw that
it would be legitimate for a rule to close a gap when its goal is not
among its active resources—or even among the active resources of its
ancestor gaps—provided it is entailed by available resources. We will not
employ such a sweeping rule but we will extend the use of QED (and
later rules which use inactive resources) by rules which add to the
available resources of a gap without changing either its active resources
or its goal.

An example is the following way of developing a gap, which we will
call Adjunction:

│⋯
│φ [available]
│⋯
│ψ [available]
│⋯
│
││⋯
││
││
││
││
│├─
││θ
│⋯

→

│⋯
│φ (n)
│⋯
│ψ (n)
│⋯
│
││⋯

n Adj││φ ∧ ψ X
││
││
││
│├─
││θ
│⋯

Fig. 2.4.3-1. Developing a derivation by applying Adj at stage n.

The added conjunction functions as a lemma so this rule represents a
way of using lemmas but it has a number of special features both by
comparison with a rule like LFR and by comparison with other rules we
have seen.

The lemma φ ∧ ψ does not lie to the right of a new scope line, as it
does in the second gap introduced by LFR, for two reasons. First, we
have not branched the gap so the added resource is available throughout
the gap. And, second, we do not need to mark this new resource off as
an added assumption because it is entailed by those already present.

Notice also that we treat this rule not as a way to plan for our goal but
simply as a way to add resources. However, it does not exploit resources
in order to add others and the X to the right of φ ∧ ψ is intended to
indicate that this resource need not be exploited further. One way to
think about this is to suppose that φ ∧ ψ has been introduced as
something already exploited. That is, although it need not have been a
once active but exploited resource (and there would be no point in
adding it if it was) it has a status similar to such resources.

adding it if it was) it has a status similar to such resources.
Adjunction is one example of a group of rules we will refer to as

attachment rules. Any such rule R will exhibit the following general
pattern.

│⋯
│resource(s)
│ that entail ξ
│⋯
│
││⋯
││
││
││
││
│├─
││θ
│⋯

→

│⋯
│resource(s) (n)
│ that entail ξ
│⋯
│
││⋯

n R││ξ X
││
││
││
│├─
││θ
│⋯

Fig. 2.4.3-2. Developing a derivation by applying an attachment rule R at
stage n.

Since the lemma is not an active resource, the proximate argument of
child gap is the same as the parent’s proximate argument so safety and
(utter) soundness hold as they would for a gap that is completely
unchanged.

The only question raised by such a rule concerns its impact on the
(minimal) soundness of rules like QED that use merely available
resources. The fact that the added resource is entailed by available
resources means that, if we extend the available resources beyond once
active ones only by using attachment rules, all resources available in a
gap will be entailed by the active resources of the gap together with the
active resources of its ancestors. Any interpretation that divides a gap
and all its ancestors will then make all available resources true, and this
will be enough for us to establish the soundness of rules using available
resources. (To rehearse the argument for QED again: if the goal of a gap
is among its available resources no interpretation can divide it and all
its ancestors because, to do this, an interpretation would need to make
its goal false while making not only its active resources but all its
available resources true, and this is impossible when the goal is among
the available resources.)

Although, as in the case of LFR, the most important constraint on the
use of attachment rules will be good sense, a rule like Adj clearly raises
questions about decisiveness since the lemma it introduces is more
complex than the premises it is based on. This increased complexity will
be typical of attachment rules and is the reason for their name. Apart
from good sense, the requirement that the lemma be a component of a

from good sense, the requirement that the lemma be a component of a
goal or active resource is a natural one since such cases will represent
the most valuable instances of attachment rules. Here, though, we need
to remember that a sentence is a component of itself and one common
use of these rules will be to introduce the goal itself as an available
resource in order to apply QED to close the gap.

The following derivation is a simple example of this in the case of Adj.
│A ∧ B 1
│C (4)
├─

1 Ext │A (3)
1 Ext │B (4)

│
││●
│├─

3 QED││A 2
│

4 Adj ││B ∧ C X,(5)
││●
│├─

5 QED││B ∧ C 2
├─

2 Cnj │A ∧ (B ∧ C)
With two uses of Cnj, we would not have needed Adj and, with two uses
of Adj, we would not have needed Cnj; but it is this sort of mixed use of
the two that brings us closest to typical patterns of explicit deductive
argument.

Glen Helman 28 Aug 2008

1

2

3

2.4.s. Summary

Using a lemma is one way of dividing up the work of a proof. We use
lemmas in derivations by dividing a gap into two gaps, one with the
lemma as a goal and the other with it as a further assumption to use
in reaching the original goal. A rule Lemma (Lem) that does this is
not safe in general, and we will use only special instances of it.

A lemma is always safe when it is entailed by the current goal. We can
use this idea in reductio arguments , arguments whose goal is ⊥. Since
⊥ entails any sentence, a rule that does this, Lemma for Reductio
(LFR) , will be safe (though some restriction on its use is needed to
insure it is progressive).

A lemma is also safe if we know we can reach it. We will use this sort
of lemma only in attachment rules that add the lemma as an available
but inactive resource. The first example of this sort of rule is
Adjunction (Adj) which adds a conjunction when both conjuncts are
already available. Although attachment rules can help us to close gaps
sooner, care is needed in their use if they are to be progressive.

The derivation rules we have so far are summarized in the table below.
The names of the rules are links to the point in the text where they were
initially described; look there to see the actual form taken by the rule.

Rules for developing gaps

for resources for goals

conjunction
φ ∧ ψ Ext Cnj

Rules for closing gaps

when to close rule

the goal is also
a resource

QED

⊤ is the goal ENV

⊥ is a resource EFQ
Basic system

Attachment rule

added resource rule

φ ∧ ψ Adj

Rule for lemmas

prerequisite rule

the goal is ⊥ LFR

Added rules
(optional)

Glen Helman 28 Aug 2008

2.4.x. Exercise questions

Use the basic system of derivations along with the attachment rule Adj
to establish the following. These repeat entailments from earlier
exercises and examples (specifically, b and d of exercise 2.2.x.2 ,
exercises 2 and 4 of 2.3.x , and the example of 2.4.2). They will work
best as exercises in the use of Adj if you avoid using Cnj.
1. A ⇒ A ∧ A
2. A ∧ B, B ∧ C, C ∧ D ⇒ A ∧ D
3. A ∧ B ⇒ A ∧ (B ∧ A)
4. A, B ∧ C, D ⇒ (C ∧ (B ∧ A)) ∧ B
5. A ∧ B ⇒ (B ∧ A) ∧ (A ∧ (B ∧ A))

The exercise machine doesn’t incorporate attachment rules, so, while it
can generate exercises where Adj would be useful, that rule won’t be
used in any answers it produces.

Glen Helman 28 Aug 2008

2.4.xa. Exercise answers

The answers below avoid the use of Cnj in order to maximize the use of
the rule Adj. In some cases, a mixed use of the two would have produced
a more natural argument.
1. │A (1)

├─
1 Adj │A ∧ A X,(2)

│●
├─

2 QED│A ∧ A
2. │A ∧ B 1

│B ∧ C 2
│B ∧ D 3
├─

1 Ext │A (4)
1 Ext │B
2 Ext │B
2 Ext │C
3 Ext │B
3 Ext │D (4)
4 Adj │A ∧ D X,(5)

│●
├─

5 QED│A ∧ D
3. │A ∧ B 1

├─
1 Ext │A (2),(3)
1 Ext │B (2)
2 Adj │B ∧ A X,(3)
3 Adj │A ∧ (B ∧ A) X,(4)

│●
├─

4 QED│A ∧ (B ∧ A)
4. │A (2)

│B ∧ C 1
│D
├─

1 Ext │B (2),(4)
1 Ext │C (3)
2 Adj │B ∧ A X,(3)
3 Adj │C ∧ (B ∧ A) X,(4)
4 Adj │(C ∧ (B ∧ A)) ∧ B X,(5)

│●
├─

5 QED│(C ∧ (B ∧ A)) ∧ B

5. │A ∧ B 1
├─

1 Ext │A (2),(3)
1 Ext │B (2)
2 Adj │B ∧ A X,(3),(4)
3 Adj │A ∧ (B ∧ A) X,(4)
4 Adj │(B ∧ A) ∧ (A ∧ (B ∧ A)) X,(5)

│●
├─

5 QED│(B ∧ A) ∧ (A ∧ (B ∧ A))

Glen Helman 28 Aug 2008

