Appendices

Appendix A. Reference

A.o. Overview

A.1. Basic concepts

Definitions of entailment and related ideas

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 15 Aug 2006

A.1. Basic concepts

Concept	Negative definition	Positive definition
$φ$ is entailed by $Γ$ $Γ \Rightarrow φ$	There is no logically possible world in which ϕ is false while all members of Γ are true.	ϕ is true in every logically possible world in which all members of Γ are true.
$φ$ and $ψ$ are (logically) equivalent $φ \Leftrightarrow ψ$	There is no logically possible world in which ϕ and ψ have different truth values.	ϕ and ψ have the same truth value as each other in every logically possible world.
φ is a tautology $\Rightarrow \varphi$ $(or \top \Rightarrow \varphi)$	There is no logically possible world in which ϕ is false.	$\boldsymbol{\phi}$ is true in every logically possible world.
$φ$ is inconsistent with Γ Γ , $φ \Rightarrow$ $(or \Gamma, φ \Rightarrow \bot)$	There is no logically possible world in which ϕ is true while all members of Γ are true.	-
Γ is inconsistent $\Gamma \Rightarrow$ (or $\Gamma \Rightarrow \bot$)	There is no logically possible world in which all members of Γ are true.	In every logically possible world, at least one member of Γ is false.
φ is absurd $\varphi \Rightarrow$ $(or \varphi \Rightarrow \bot)$	There is no logically possible world in which $\boldsymbol{\phi}$ is true.	ϕ is false in every logically possible world.
Σ is rendered exhaustive by Γ $\Gamma \Rightarrow \Sigma$	There is no logically possible world in which all members of Σ are false while all members of Γ are true.	At least one member of Σ is true in each logically possible world in which all members of Γ are true

Glen Helman 15 Aug 2006

A.2. Logical forms

$Forms \ for \ which \ there \ is \ symbolic \ notation$

	Symbolic notation	English notation or English reading			
Negation	¬ φ	not φ			
Conjunction	φ∧ψ	both ϕ and ψ	$(\phi \text{ and } \psi)$		
Disjunction	φνψ	either ϕ or ψ	$(\phi \text{ or } \psi)$		
The conditional	$\phi \to \psi$	if ϕ then ψ	$(\phi \text{ implies } \psi)$		
	$\psi \leftarrow \phi$	yes ψ if ϕ	$(\psi \text{ if } \phi)$		
Identity	τ = υ	τ is υ			
Predication	$\theta \tau_1 \tau_n$	$\theta \text{ fits } \tau_1,,\tau_n$	A series of terms $\tau_1,, \tau_n$		
Compound term	$y\tau_1\tau_n$		A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,,$ an' τ_n (using the contraction an' to		
		γ applied to $\tau_1,, \tau_n$	distinguish this use of and from its use in conjunction and adding series when necessary to avoid ambiguity)		
Predicate abstract	$\left[\varphi\right]_{X_1X_n}$	what φ says of x_1x_r	1		
Functor abstract	$[\tau]_{X_1X_n}$	τ for $\mathbf{x_1}\mathbf{x}_n$			
Universal	$\forall x \ \theta x$	forall $x \theta x$			
quantification		everything, x, is su	, x, is such that θx		
Restricted	(∀x: ρx)	forall x st ρx θx			
universal	θx	•	that ρx is such that		
-		θx			
Existential	$\exists x \ \theta x$	for some $x \ \theta x$			
quantification		something, x, is suc	ch that θx		
Restricted	(∃x: ρx)	for some x st ρx θx something, x , such that ρx is such that θx			
existential	θх				
Definite	lx ρx	the x st ρx			
description		the thing, x , such t	hat ρx		

$Some\ paraphrases\ of\ other\ forms$

Truth-functional compounds

	rain fanetional compounds	
neither φ nor ψ	¬ (φ v ψ)	
	¬φ∧¬ψ	
ψ only if φ	$\neg \ \psi \leftarrow \neg \ \phi$	
ψ unless φ	$\Psi \leftarrow \neg \ \phi$	
	Generalizations	
All Cs are such that (they)	(∀x: x is a C) x	ζ
No Cs are such that (they)	(∀x: x is a C) ¬	х
Only Cs are such that (they)	(∀x:¬xisaC)¬.	x
with: among Bs	add to the restriction:	x is a B
except Es	_	¬ x is an E
other than τ		$\neg x = \tau$
N	umerical quantifier phrases	
At least 1 C is such that (it)	(∃x: x is a C) x	C
At least 2 Cs are such that (they)	($\exists x: x \text{ is a C}$) ($\exists y: y \text{ is a C } \land \neg y = x$)	(x ^ y)
Exactly 1 C is such that (it)	(∃x: x is a C) (x ∧ (∀y: y is a C ∧ or (∃x: x is a C) (x ∧ (∀y: y is a C)	
Definite (descriptions (on Russell's anal	ysis)
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg or$ $(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C))$	

Glen Helman 19 Aug 2006

A.3. Truth tables

Tautology		Absi	ırdity	Negation		
$\frac{\top}{T}$		-	<u>⊥</u> F	$\begin{array}{c c} \phi & \neg \ \phi \\ \hline T & F \\ F & T \end{array}$		
Conju	ınction	Disju	nction	Cond	litional	
φψ	φ∧ψ	φψ	φνψ	φψ	$\phi \rightarrow \psi$	
TT	T	ТТ	T	ТТ	T	
ΤF	F	ΤF	T	ΤF	F	
FΤ	F	FΤ	T	FΤ	T	
FF	F	F F	F	FF	T	

Glen Helman 15 Aug 2006

A.4. Derivation rules

Basic system

Rules for developing gaps				Rules for closing gaps			
for resources for goals			when to close			rule	
atomic			co-	aliases	resources	goal	
sentence		IP			φ	φ	QED
negation ¬ φ	CR (if φ not atomic & goal is ⊥)	RAA			ϕ and $\neg \phi$	Т	Nc
conjunction	Ext	Cnj				Т	ENV
φνψ	LAT	Cij			Т		EFQ
disjunction φνψ	PC	PE		τ—υ		τ = υ	EC
conditional	RC	СР		τ—υ	$\neg \tau = \upsilon$	Т	DC
$\phi \rightarrow \psi$	(if goal is ⊥)		$\tau_1 - \upsilon_1$	$,,\tau_n-\upsilon_n$	$P\tau_1\tau_n$	Pv_1v_n	QED=
universal ∀x θx	UI	UG	$\tau_1 - \upsilon_1$,, τ _n —υ _n	$\Pr_{\neg \ P \upsilon_1 \dots \upsilon_n}$	Т	Nc=
existential	PCh	NcP		Detachn	nent rules (optional)
$\exists x \theta x$			require	ed resource	es rule	?	
				main	auxiliar	y	
					φ	MPI)
In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.				$\phi \rightarrow \psi$	¬± ψ	MT	Γ
				φνψ	$\neg^{\pm} \phi$ or \neg	± ψ MTI	2
				¬ (ф л ф)) φor ψ	MP	

Additional rules (not guaranteed to be progressive)

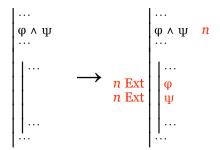
Attachment rules				
$added\ resource$	rule			
φνψ	Adj			
$\phi \rightarrow \psi$	Wk			
φνψ	Wk			
¬ (φ ∧ ψ)	Wk			
$\tau = \upsilon$	CE			
θv_1v_n	Cng			
∃х θх	EG			

Rule for lemmas prerequisite rule the goal is \bot LFR

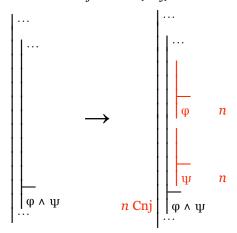
Diagrams

Rules from chapter 2

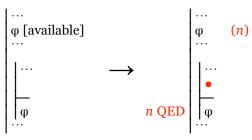
Extraction (Ext)



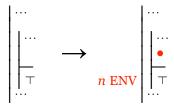
Conjunction (Cnj)



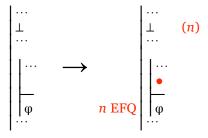
Quod Erat Demonstrandum (QED)



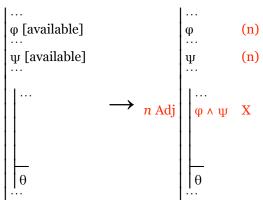
Ex Nihilo Verum (ENV)



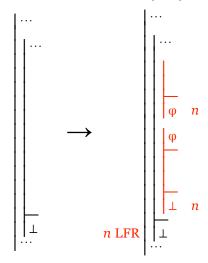
Ex Falso Quodlibet (EFQ)



Adjunction (Adj)

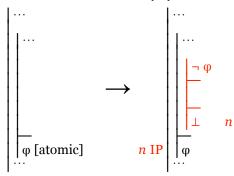


Lemma for Reductio (LFR)

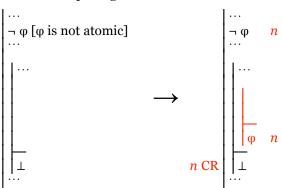


Rules from chapter 3

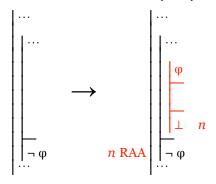
Indirect Proof (IP)



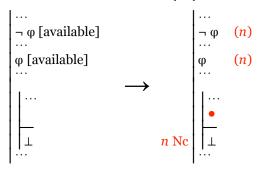
Completing the Reductio (CR)



Reductio ad Absurdum (RAA)

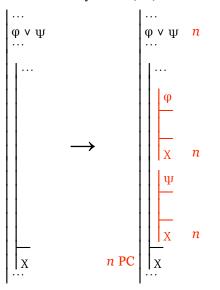


Non-contradiction (Nc)

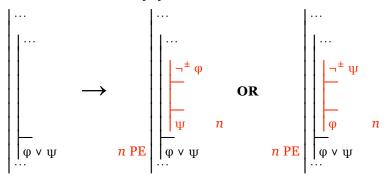


Rules from chapter 4

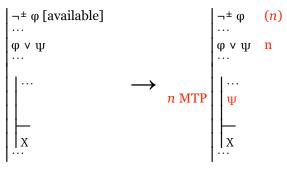
Proof by Cases (PC)

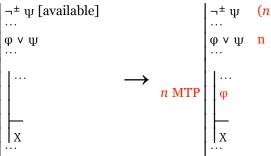


Proof of Exhaustion (PE)

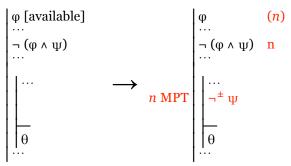


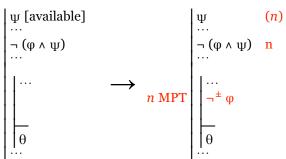
Modus Tollendo Ponens (MTP)



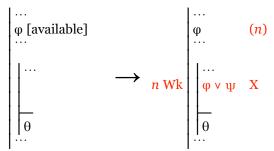


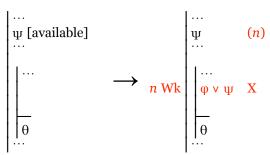
Modus Ponendo Tollens (MPT)



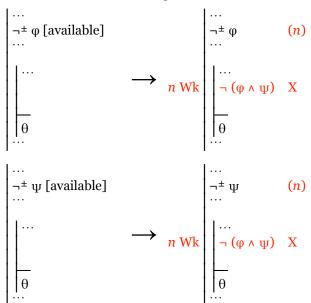


Weakening (Wk)



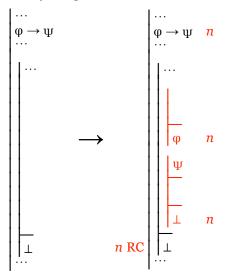


Weakening (Wk)

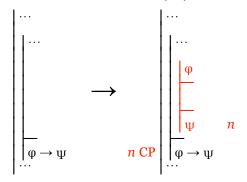


Rules from chapter 5

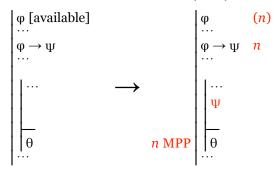
Rejecting a Conditional (RC)



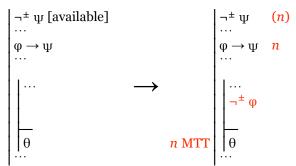
Conditional Proof (CP)



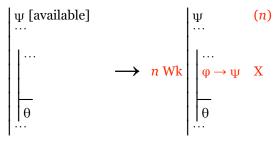
Modus Ponendo Ponens (MPP)



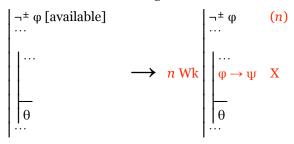
Modus Tollendo Tollens (MTT)



Weakening (Wk)

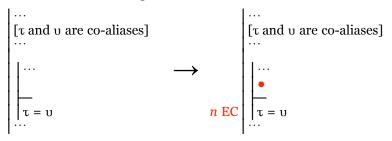


Weakening (Wk)



Rules from chapter 6

Equated Co-aliases (EC)



Distinguished Co-aliases (DC)

QED given equations (QED=)

$$\begin{bmatrix} \vdots \\ \tau_1 \dots \tau_n \text{ and } \upsilon_1 \dots \upsilon_n \\ \text{are co-alias series} \end{bmatrix}$$

$$\vdots \\ P\tau_1 \dots \tau_n \\ \vdots \\ P\upsilon_1 \dots \upsilon_n$$

$$\Rightarrow \qquad \begin{bmatrix} \vdots \\ \tau_1 \dots \tau_n \text{ and } \upsilon_1 \dots \upsilon_n \\ \text{are co-alias series} \end{bmatrix}$$

$$\vdots \\ P\tau_1 \dots \tau_n \\ \vdots \\ P\upsilon_1 \dots \upsilon_n \\ \vdots \\ \\ P\upsilon_1 \dots \upsilon_n \\ \vdots \\ P\upsilon_1 \dots \upsilon_n \\ \vdots \\ P\upsilon_1 \dots \upsilon_n \\ \vdots \\ P\upsilon_1 \dots \upsilon_n \\$$

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

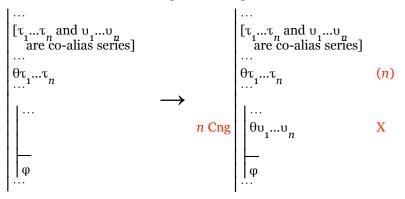
Non-contradiction given equations (Nc=)

$$\begin{vmatrix} \dots \\ [\tau_{1}...\tau_{n} \text{ and } \upsilon_{1}...\upsilon_{n} \\ \text{are co-alias series}] \\ \dots \\ \neg P\tau_{1}...\tau_{n} \\ \dots \\ P\upsilon_{1}...\upsilon_{n} \\ \dots \\ n \text{ Nc} = \begin{vmatrix} \dots \\ [\tau_{1}...\tau_{n} \text{ and } \upsilon_{1}...\upsilon_{n} \\ \text{are co-alias series}] \\ \dots \\ \neg P\tau_{1}...\tau_{n} \\ \dots \\ n \text{ Nc} = \begin{vmatrix} \dots \\ [\tau_{1}...\tau_{n} \text{ and } \upsilon_{1}...\upsilon_{n} \\ \text{are co-alias series}] \\ \dots \\ \neg P\tau_{1}...\tau_{n} \\ \dots \\ n \text{ (n)} \\ \dots \\ \bullet \\ \bot \\ \dots \end{aligned}$$

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)

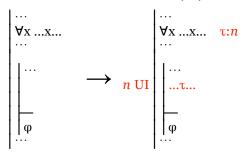
Congruence (Cng)



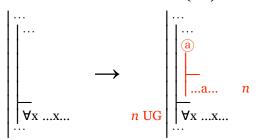
Note: θ can be an abstract, so $\theta \tau_1 ... \tau_n$ and $\theta \upsilon_1 ... \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are coaliases.

Rules from chapter 7

Universal Instantiation (UI)

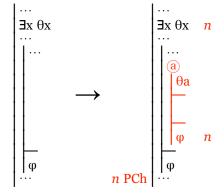


Universal Generalization (UG)

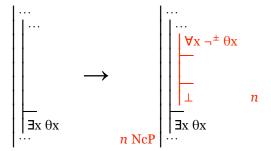


Rules from chapter 8

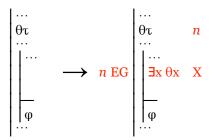
Proof by Choice (PCh)



Non-constructive Proof (NcP)



Existential Generalization (EG)



Glen Helman 19 Aug 2006