
8.5. Proofs by choice and proofs of existence

8.5.0. Overview

Although formal proofs for disjunction involve some new ideas, these
are mainly recombinations of ideas used for disjunction and universals.

8.5.1. Proof by choice  
A conclusion can be derived from an existential by choosing a new
name for the example whose existence it claims.

8.5.2. Constructive and non-constructive proof  
A claim of exemplification can be established either by constructing an
example or by reducing to absurdity the assumption that there is no
such example.

8.5.3. Derivations for existentials  
Derivation rules for existentials then also exhibit an analogy with
those for disjunction, with two basic rules supplemented by an often
useful attachment rule.

8.5.4. First-order logic  
This completes our account of entailment for first-order logic, which
has come to replace the theory of syllogisms as the generally accepted
core of deductive logic.
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8.5.1. Proof by choice

As has been the case elsewhere in this chapter, our discussion of
principles of entailment for existentials can build on our discussion of
universals in the last chapter. The differences between the principles
governing universal and existential quantifiers will, in most cases, be
analogous to differences between the principles for conjunction and
disjunction. The laws of entailment for the universal quantifiers were
modifications of laws for conjunction, and the rules for the existential
quantifiers will nearly all be based in a similar way on rules for
disjunction. Our planning rule for existential sentences is the one
exception to this, and even it is analogous to a rule that could have been
used for disjunction.

These analogies with the universal quantifier on the one hand and
with disjunction on the other derive from the truth conditions for the
unrestricted existential, which follow the conditions for disjunction in
precisely the way the conditions for the universal follow those for
conjunction. A sentence ∃x θx is true in a structure if and only if it has
at least one true instance in a language expanded by the range R of that
structure. In other words, an existential claim behaves like a disjunction
of its instances when these instances are taken from a language that has
a name for each reference value in the structure. However, as was the
case with the universal, the set of instances can vary from one structure
to another, so general laws of entailment cannot employ any definite
information about what the instances of an existential sentence are.

We will begin our discussion of principles of entailment with the role
of an unrestricted existential as a premise. First, recall the
corresponding principle for disjunction. A disjunctive premise may be
used to draw a conclusion by way of a proof by cases. In such a proof,
we suppose in turn that each of the disjuncts is true and argue for the
conclusion in each case. A comparable way of arguing from an
existential would be to establish many case arguments, each one
considering an instance of the existential as one case. Since we cannot
associate the existential with any definite set of instances, there is no
way to delimit the range of case arguments we would need to consider,
so we must use adapt a device from our treatment of the universal: we
need to set out the indefinitely many arguments by offering a general
pattern. That is, to use an existential premise to draw a conclusion, we
draw the conclusion from one instance of the existential in a way that
sets a pattern for all other instances.

This sort of argument may be called a proof by choice, a name
which reflects another way of looking at the principle behind it.



which reflects another way of looking at the principle behind it.
Consider the two arguments below.

Anyone who worked late
got overtime

If anything broke down,
Tom worked late

Something broke down
Tom got overtime

Anyone who worked late
got overtime

If anything broke down,
Tom worked late
X broke down
Tom got overtime

The validity of the argument on the left can be traced to the validity of
the one on the right. In the latter, we use the premise X broke down in
place of the existential Something broke down, so we argue for the
conclusion from an instance of the existential. When we replace an
existential by an instance of it, we are choosing an name for the example
the existential claims to exist, so this is an argument to proceeds by way
of the choice of a name.

Of course, we cannot assume that the “something” claimed to exist by
an existential premise is some thing that we have other information
about. That is, choosing a name really means choosing a new name. For
an unrestricted existential tells us nothing about the example it claims
to exist except for the property it is said to exemplify. So the name we
choose must be one that could apply to anything that has this property.
And that returns us to the first way of looking at proofs by choice: they
must argue from one instance of an existential in a way that sets a
pattern for all such instances.

Recalling the test we used for the generality of arguments in the case
of the universal quantifiers, we can expect our analysis of the role of an
existential as a premise to make reference to a term that is
independent in an appropriate sense. We will want a term α that has
no connection to the premises and conclusion of the argument—
including the existential ∃x θx—apart from the assumption θα. So
suppose the term α is unanalyzed term and does not appear in the set Γ,
the sentence φ, or the existential ∃x θx, and consider the two arguments

Γ, ∃x θx / φ 
Γ, θα / φ.

We can argue that each is valid if and only if the other is if we can show
that each is divided by a structure if and only if the other is. If a
structure S divides the premises and conclusion of the first, it will assign
θ a non-empty extension, and we can form a structure S′ that divides
the second argument by assigning a value in this extension to the term 
α. For this assignment will not change the extension of θ or the truth
values of φ and the members Γ since α does not appear in these

values of φ and the members Γ since α does not appear in these
expressions, so θα will be true and the conclusion and the other
premises will keep the same truth values. On the other hand, any
structure dividing the second argument will give θ a non-empty
extension (because the value of the term α will be in it) so this structure
will make ∃x θx true and also divide the first argument. Thus we will
have a structure dividing one argument if and only if we have a
structure dividing the other, and each argument is valid if and only if the
other is.

This gives us our principle describing the role of the unrestricted
existential as a premise.

LAW FOR THE UNRESTRICTED EXISTENTIAL AS A PREMISE. Γ, ∃x θx ⇒ φ if and
only if Γ, θα ⇒ φ (for any set Γ, predicate θ, and sentence φ and any
unanalyzed term α that does not appear in Γ, θ, or φ)

The corresponding principle for the restricted existential combines these
ideas with the properties of conjunction:

Γ, (∃x: ρx) θx ⇒ φ if and only if Γ, ρα, θα ⇒ φ
(for any set Γ, predicates ρ and θ, and sentence φ and any unanalyzed

term α that does not appear in Γ, ρ, θ, or φ)

That is, having a restricted existential as an assumption comes to the
same thing as assuming that an independent term refers to something
that is in the domain and has the attribute.
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8.5.2. Constructive and non-constructive proof

As the title suggests, we will consider two ways of establishing an
existential conclusion. In the first and most general of these, we
establish a claim ∃x θx that a property θ is exemplified by reducing to
absurdity the claim ∀x ¬  θx that nothing has this property. This way of
drawing an existential conclusion is called a non-constructive proof
because it enables us to establish a claim of exemplification without ever
describing a particular example. The use of the term construction here
can be traced historically to geometry, where claims of exemplification
are typically established by a geometric construction of the figure that is
claimed to exist; but the term construction has come to be applied in
mathematics to other techniques that specify particular examples.

We will adopt the idea of non-constructive proof as our basic principle
for the existential as a conclusion.

LAW FOR THE UNRESTRICTED EXISTENTIAL AS A CONCLUSION. Γ ⇒ ∃x θx if and
only if Γ, ∀x ¬  θx ⇒ ⊥ (for any set Γ and predicate θ)

This principle does not explain the role of the existential as a conclusion
directly, but instead makes a connection with the role of the universal as
a premise. A law for ∃ that makes no reference to ∀ is easier to state for
relative exhaustiveness where the use of multiple alternatives makes it
possible to principle dual to the principle for the universal as a premise;
see appendix B  for the form this principle takes.

On the other hand, a constructive proof of a claim of
exemplification establishes the claim by first producing an example of
the sort that is claimed to exist. The move from an example to a claim of
exemplification appears formally as a step from an instance of an
existential to the existential itself. The principle of entailment governing
this step is commonly known as existential generalization:

θτ ⇒ ∃x θx (for any term τ)
The conclusion of this entailment is not a generalization in the sense in
which we have been using the term. But it may be said of someone who
is making heavy use of words like something and someone that he is
“speaking in generalities” and is not being specific. The principle of
existential generalization is a license to move from a specific claim to a
generality of an existential sort. We cannot rely on this principle alone,
but it does provide a useful supplement in the way the principle of
weakening supplements the law for disjunction as a conclusion. And,
like weakening, we will count existential generalization as an attachment
principle. (What is attached? In form, we could say it is the existential
quantifier; in what is said, it is the other instances of the conclusion, the

±
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quantifier; in what is said, it is the other instances of the conclusion, the
other ways in which it could be true.)

Although non-constructive proofs of exemplification have been
common in modern mathematics, many have questioned their value.
The doubts about them have not usually been doubts about their validity
(though Brouwer, who was mentioned in 3.1.3 , could be said to have
doubted that in spite of the fact that early in his career he produced
some non-constructive proofs for which he is still famous). The feature
of non-constructive proofs that lies behind these doubts is instead a
weakness that is granted even by those who accept such proofs happily:
because they do not produce an example, non-constructive proofs may
provide little insight into the reasons why a claim of exemplification is
true.

The deepest concerns about non-constructive proof are focused on
arguments about abstract and, especially, infinite structures, and even
Brouwer thought that non-constructive proofs were valid for reasoning
about ordinary claims concerning the world of sense experience. Still,
the indirection and uninformativeness of non-constructive arguments
can be felt with ordinary reasoning and is often unnecessary, so it is
worthwhile considering the alternative.

Finally, let us look further at the reasons why our general account of
the existential as the conclusion has been made parasitic on our account
of the universal as a premise. First, recall our account of the role of
disjunction as conclusion: Γ ⇒ φ ∨ ψ if and only if Γ, ¬  φ ⇒ ψ. We
could have avoided the asymmetric treatment of the two components if
we had resorted to an even heavier use of negation; applying the idea
behind IP to the right side of the law, we get this: Γ ⇒ φ ∨ ψ if and only
if Γ, ¬  φ, ¬  ψ ⇒ ⊥. That is, a disjunction is a valid conclusion if and
only if we can reduce to absurdity the supposition that its components
are both false. We are often able to avoid this use of reductio arguments
in the case of disjunction, but it would be awkward to do so in the case
of the existential.

A strict analogue for the existential of this rule for disjunction would
say that we can conclude an existential ∃x θx from premises Γ if and
only if we can reduce to absurdity the result of adding denials of all the
instances of ∃x θx to Γ. But, since there is no definite set of instances,
we cannot take this approach literally. We had an analogous problem in
the case of the universal, where an attempt to follow the pattern of our
treatment of conjunction as a premise would lead us to replace a
universal premise by all of its instances. Our solution was the to add
instances freely while retaining the universal. We cannot replicate that
approach for existentials in principles for entailment since it would
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approach for existentials in principles for entailment since it would
require multiple alternatives rather than a single conclusion, but we can
make our treatment of existentials parasitic on the account for
universals. Instead of adding the denials of all instances of the
existential, we add the corresponding generalization ∀x ¬  θx.
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8.5.3. Derivations for existentials

To implement the laws we have just been considering, we will again use
ideas introduced in connection with universals. In particular, a proof by
choice will be marked by a veil of ignorance flagged by an independent
term, and it will have a supposition that sets out the example chosen.
However, the complications that appeared with the rules for exploiting
universals may be left with those rules, since we manage planning for
an existential conclusion simply by passing the buck on to universals.

The two basic rules for the unrestricted existential are Proof by
Choice (PCh) and Non-constructive Proof (NcP):

│…
│∃x θx
│…
││…
││
││
││
││
││
││
│├─
││φ
│…

→

│…
│∃x θx n
│…
││…
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─
││φ

n PCh│…

Fig. 8.5.3-1. Developing a derivation at stage n by exploiting an
unrestricted existential; the independent term a is new to the derivation.

│…
││…
││
││
││
││
││
│├─
││∃x θx
│…

→

│…
││…
│││∀x ¬  θx
││├─
│││
││├─
│││⊥ n
│├─
││∃x θx

n NcP│…

Fig. 8.5.3-2. Developing a derivation at stage n by planning for an
unrestricted existential.

Notice that the existential is rendered inactive in the first rule. Also
remember that the independent term that is used in this rule should be
new to the derivation; that will insure that the supposition that is
introduced represents the only information about this independent term
that may be used in closing the gap.
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The second rule will often be a very indirect way of reaching an
existential goal, and the following attachment rule, Existential
Generalization (EG), can simplify derivations considerably:

│…
│θτ
│…
││…
││
││
│├─
││φ
│…

→

│…
│θτ n
│…
││…

n EG││∃x θx X
││
│├─
││φ
│…

Fig. 8.5.3-3. Developing a derivation at stage n by adding an
unrestricted existential that has an instance among the active

resources.

Although this is an attachment rule and therefore not part of the basic
system, you should be as ready to use it as the two above.

Here are two derivations that illustrate these rules. Each shows that a
claim of uniformly general exemplification implies the corresponding
claim of general exemplification without a claim of uniformity.

│∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:4
│├─
││ⓑ
││││∀x ¬ Rxb a:5
│││├─

4 UI ││││Rab (6)
5 UI ││││¬ Rab (6)

││││●
│││├─

6 Nc ││││⊥ 3
││├─

3 NcP│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh│∀y ∃x Rxy

 │∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:3
│├─
││ⓑ

3 UI │││Rab (4)
4 EG │││∃x Rxb X,(5)

│││●
││├─

5 QED│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh │∀y ∃x Rxy

The derivation on the left uses a non-constructive proof of the
existential that is set as the goal in stage 2 while the one on the right
uses EG to give a constructive proof of this existential. Both derivations
begin by exploiting the existential premise, but derivations for the same
entailment could have been developed by planning for the initial

entailment could have been developed by planning for the initial
conclusion first; and, when NcP is used, it would be possible to
postpone the exploitation of the initial premise until after NcP is
applied. (It would be a good exercise at this point to write down these
other derivations for this argument.) The savings here in length and
complexity by using EG in this case are typical of cases where it can be
used.

Since EG can be used only when the resources entail an existential, it
often cannot be used in derivations that fail, and NcP is required even in
some derivations for valid existential conclusions. A derivation showing
the obversion principle ¬ ∀x Fx ⇒ ∃x ¬ Fx is simple example of this.

│¬ ∀x Fx (2)
├─
││∀x Fx (2)
││●
│├─

2 Nc ││⊥ 1
├─

1 NcP│∃x ¬ Fx

EG could not have been applied here because the premise does not
entail any sentence ¬ Fτ from which we could generalize.

Arguments for the soundness and completeness of this system carry
over from 7.7  without any new wrinkles. We solved all the key problems
there, and a number are not even repeated here. However, we cannot
avoid the consequences of the failure of decisiveness. If we wish to find
finite counterexamples whenever they exist, we need to use a modified
rule for exploiting existential resources in the way the rule for planning
for a universal goal was modified in 7.8.1 . Without such a rule, we will
not reach dead-end open gap in any derivation whose resources contain
a weak, though unrestricted, claim of general exemplification (e.g., the
sentence of the form ∀x ∃y Rxy). The modified rule is Supplemented
Proof by Choice (PCh+).



│…
│∃x θx
│…
││…
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│…

→

│…
│∃x θx n
│…
││…
│││θσ
││├─
│││
││├─
│││φ n
││
││…
││
│││θτ
││├─
│││
││├─
│││φ n
││
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─

n PCh+││φ
│…

Fig. 8.5.3-4. Developing a derivation at stage n by exploiting an
unrestricted or a restricted existential; the independent term a is new to

the derivation and the terms σ, …, τ include at least one from each
current alias set for the gap

The following derivation illustrates this rule. It shows that a claim of
general exemplification need not imply uniformity by finding a
counterexample to the entailment ∀x ∃y Rxy ⇒ ∃y ∀x Rxy.

│∀x ∃y Rxy a:2, c:9
├─
││∀y ¬ ∀x Rxy a:3, c:10
│├─

2 UI ││∃y Ray 5
3 UI ││¬ ∀x Rxa 4

││
││││Raa (7)
│││├─
│││││●
││││├─

7 QED │││││Raa 6
││││
││││ⓒ
││││││¬ Rca (15)
│││││├─

9 UI ││││││∃y Rcy 12
10 UI ││││││¬ ∀x Rxc 11

││││││
││││││││Rca (15)
│││││││├─
││││││││ⓓ
││││││││││¬ Rdc
│││││││││├─
││││││││││●
│││││││││├─

15 Nc ││││││││││⊥ 14
││││││││├─

14 IP │││││││││Rdc 13
│││││││├─

13 UG ││││││││∀x Rxc 12
│││││││
││││││││Rcc (18)
│││││││├─
││││││││││¬ Rac
│││││││││├─
││││││││││○ Raa, ¬ Rca, Rcc, ¬ Rac ⇏ ⊥
│││││││││├─
││││││││││⊥ 17
││││││││├─

17 IP │││││││││Rac 16
││││││││
│││││││││●
││││││││├─

18 QED │││││││││Rcc 16
││││││││
││││││││ⓕ
│││││││││(unfinished)
││││││││├─
│││││││││Rec 16
│││││││├─

16 UG+ ││││││││∀x Rxc 12
│││││││
│││││││ⓔ
││││││││Rcd
│││││││├─
││││││││(unfinished)
│││││││├─
││││││││∀x Rxc 12
││││││├─

12 PCh+│││││││∀x Rxc 11
│││││├─

11 CR ││││││⊥ 8
││││├─

8 IP │││││Rca 6
│││├─

6 UG+ ││││∀x Rxa 5
│││
│││ⓑ
││││Rab
│││├─
││││(unfinished)
│││├─
││││∀x Rxa 5
││├─

5 PCh+ │││∀x Rxa 4
│├─

4 CR ││⊥ 1
├─

1 NcP │∃y ∀x Rxy

 

 



Although this is long and cumbersome, the development of the dead-
end gap goes through the kinds steps you would need to go through in
your own thinking to arrive the same counterexample:

The premise says that everything stands in relation R to
something or other. So let’s suppose we have an object a such
that Raa. But we if we stop there, everything will stand in R to a
and the conclusion will be true. So let’s suppose we have a second
object c that doesn’t stand in R to a. Now c must stand in R to
something if the premise is to be true and it can’t stand in R to a,
so let’s suppose it stands in R to itself. Now, to make the
conclusion false we must be sure that not everything stands in R
to c, so we better suppose that a does not. So we’ve described a
possible world containing objects a and c where Raa, ¬ Rca, Rcc, 
¬ Rac; and that’s enough to make the premise true and the
conclusion false.

Developing the unfinished gaps would lead to other counterexamples.
For example, the last open gap in this derivation explores the possibility
of making the premise true by having a stand in R to another object b
and it would, among other things, lead us to a counterexample in which
each of a and b is stands in R to the other but neither stands in R to
itself.
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8.5.4. First-order logic

Although we will go on in 8.6  to give some consideration to derivations
for the description operator, our system of derivations is now essentially
complete. It is intended to capture entailments that derive from truth-
functional logic and the logical properties of identity, predication, and
the quantifiers. This range of logical forms is the concern of first-order
logic. (Usage varies a little, and sometimes identity is not included; in
that case, our subject is “first-order logic with identity.”) Beginning
about a century ago, first-order logic came to replace the theory of
syllogisms as the commonly accepted core of deductive logic. In the
current practice of mathematics, for example, even very abstract general
principles falling beyond its scope would be treated as special axioms (of
the theory of sets for example) while principles of first-order logic would
be accepted as background assumptions within the context of which the
consequences of special axioms are assessed.

The theory of syllogisms itself appears as an account of a very special
sort of argument. This was sketched in 7.5.6  but having the existential
quantifier makes it possible to provide more detail in a compact way.
The four moods, the logical forms recognized by the theory, are as
follows (with the vowels that serve as their traditional labels):

A: (∀x: ρx) θx E: (∀x: ρx) ¬ θx

I: (∃x: ρx) θx O: (∃x: ρx) ¬ θx

and the four figures are the following patterns of occurence of the three
predicates that can appear in a syllogism (where the predicate shown on
the left is the resticting predicate of the sentence and the one on the
right is its quantified predicate):

µ θ
ρ µ

ρ θ

θ µ
ρ µ

ρ θ

µ θ
µ ρ

ρ θ

θ µ
µ ρ

ρ θ
1 2 3 4

Here µ is the middle term.
Of the 64 syllogisms of the first figure, the following four are valid:

(∀x: µx) θx 
(∀x: ρx) µx

(∀x: ρx) θx

(∀x: µx) ¬ θx 
(∀x: ρx) µx

(∀x: ρx) ¬ θx

(∀x: µx) θx 
(∃x: ρx) µx

(∃x: ρx) θx

(∀x: µx) ¬ θx 
(∃x: ρx) µx

(∃x: ρx) ¬ θx

Barbara Celarent Darii Ferio
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Notice that the pattern of vowels in the traditional name shown below
each argument matches the moods of its premises and conclusion. The
proportion of valid arguments in the other figures is similar, and there
are fifteen valid syllogisms all told.

One of the limitations of theory of syllogisms is an inability to
consider logical relations between the restricitng and quantified
predicates of a generalization or claim of exemplification. For example,
using the resources of first-order logic, we can account for the fact that
Every horse is a mammal implies Any head of a horse is a head of a
mammal (an entailment mentioned in 7.1.1 ).

(∀x: Hx) Mx

(∀x: (∃y: Hy) Dxy) (∃z: Mz) Dxz

H: [ _ is a horse]; M: [ _ is a mammal]; D: [ _ is a head of _ ]

│∀x (Hx → Mx) b:5
├─
│ⓐ
│││∃y (Hy ∧ Day) 3
││├─
│││ⓑ
││││Hb ∧ Dab 4
│││├─

4 Ext ││││Hb (6)
4 Ext ││││Dab (7)
5 UI ││││Hb → Mb 6
6 MPP││││Mb (7)
7 Adj ││││Mb ∧ Dab X, (8)
8 EG ││││∃z (Mz ∧ Daz) X, (9)

││││●
│││├─

9 QED││││∃z (Mz ∧ Daz) 3
││├─

3 PCh │││∃z (Mz ∧ Daz) 2
│├─

2 CP ││∃y (Hy ∧ Day) → ∃z (Mz ∧ Daz) 1
├─

1 UG │∀x (∃y (Hy ∧ Dxy) → ∃z (Mz ∧ Dxz))

(The use of adjunction and existential generalization at stages 7 and 8
saves us having to enter ∀z ¬ (Mz ∧ Daz) as a supposition to be reduced
to absurdity.) But, even thought this argument is closely related to
syllogisms—the active resources and goal after the use of CP at stage 2
form a valid syllogism of the third figure known as Disamis—its validity
cannot be explained without an analysis of the restricting and quantified
predicates of the conclusion, something the theory of syllogisms does
not provide for.

not provide for.
Although first-order logic forms the core of deductive logic, it is not

the whole of it. One way to go beyond it is to study the sort of non-
truth-functional connectives noted in 3.1.2 . Another is to consider
further sorts of quantifiers. The qualification first-order derives from
the fact that we analyze quantification only over individuals and not
over properties and relations. Thus we cannot analyze the sentence
Objects a and b are identical if and only if every property of one is
a property of the other, and we cannot ask whether this sentence is a
tautology. The representation of such higher-order quantification
symbolically would present few new problems. We would need bindable
variables that functioned syntactically as predicates, notation for
complex predicates of predicates (with our quantifiers serving as simple
predicates of predicates), and quantifiers applying to such predicates of
predicates. This would give us second-order logic. To go further, we
might introduce quantification for predicates of predicates—and so on.
If this process is continued to all (finite) orders, we end up with what is
known as higher-order logic or (simple) type theory.

While higher-order logic introduces nothing really new in its syntax,
the account of entailment for it is a completely different game, and the
new problems appear already with second-order logic. In particular,
there can be no sound system for settling questions of validity for
second-order logic that is even complete, much less decisive. Indeed, a
full understanding of validity for second-order logic would provide a full
understanding of all truths concerning positive integers. But it was
shown by Kurt Gödel in the early 1930s that these truths cannot be
captured by anything like a system of derivations. (This is the result
mentioned in 7.7.1  as the basis on which Church showed that there
could be no system of derivations for first-order logic that was decisive
as well as sound and complete.)

So there is reason to distinguish the theory of first-order
quantification from higher-order logic. Frege’s work did not make this
distinction. The subject matter he addressed included the whole of what
is now known as type theory because he was interested in connections
with arithmetic, whose truths he wished to explain as logical tautologies.
Although he provided what was essentially a complete account of
validity for first-order logic, his treatment of other areas introduced
inconsistencies. These were repaired shortly after (in the first decade of
the 20  century) by Bertrand Russell, whose work led to the current
conception of type theory. First-order logic came to be distinguished
within type theory and was permanently set in its present form by Gödel
when he showed that Frege’s initial ideas provided a complete account

th



when he showed that Frege’s initial ideas provided a complete account
of validity for this part of logic.

Glen Helman  15 Aug 2006
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8.5.s. Summary

Existentials bear the kind of analogy to disjunctions that universals
bear to conjunctions, and their role in entailment reflects this. Our
principle for the unrestricted existential as premise  says that the
existential will support a proof by choice . This is a sort of proof by
cases in which cases for each instance of the existential are handled
not one by one but by using an independent term  to make a general
argument. This instance can be thought of as an example, chosen in
ignorance of its identity, of the sort that the existential claims to exist.

There are two approaches to establishing an existential conclusion.
Our general principle for the unrestricted existential as a conclusion
uses the idea of non-constructive proof , in which a claim of
exemplification is based on the reduction to absurdity of a
corresponding negative universal. In a constructive proof  using
existential generalization , an existential conclusion is based on the
proof of an instance, which thus “constructs” an example of the sort
the existential claims to exist.

The laws for existential premises and conclusions are implemented in
exploitation and planning rules using some ideas from the rules for
universals. The principles for unrestricted existentials are
implemented in the rules Proof by Choice (PCh) , Non-constructive
Proof (NcP) , and Existential Generalization (EG) . Also as was the
case with the universal quantifier, to uncover counterexamples to
invalid arguments using finite ranges (when such counterexamples
exist), we need a supplemented form of proof by choice PCh+ .

The system we have now completed accounts for the entailments of
what is known as first-order logic . It has come to been seen as the
core of deductive logic. Until a century ago that status was given to
the theory of syllogims , which can be regarded as a portion of first-
order logic which does not make use of the possibility of analyzing the
restricting and quantified predicates of generalizations.

The qualification first-order indicates that we consider
quantification only over individuals and not over properties,
properties of those properties, or any other second-order  or higher-
order  entities. Although higher-order logic, or type theory , has
attracted interest since Frege, it cannot be given a complete system of
derivations.

Glen Helman  19 Aug 2006



8.5.x. Exercise questions

1. Use the system of derivations to establish each of the following:
a. ∃x Fx, ∀x (Fx → Gx) ⇒ ∃x Gx
b. ∃x (Fx ∧ Gx), ∀x (Gx → Hx) ⇒ ∃x (Fx ∧ Hx) [this is the

syllogism Darii]
c. ∀x (Fx → Ga) ⇔ ∃x Fx → Ga
d. Fa ⇔ ∃x (x = a ∧ Fx)
e. ∃x (Fx ∧ ∀y Rxy) ⇒ ∀x ∃y (Fy ∧ Ryx)
f. ∃x (Gx ∧ Fx), ¬ Fa ⇒ ∃x (¬ x = a ∧ Gx)
g. ∀x (Fx → Ga),∀x (Ga → Fx), ∃x Fx ⇒ ∀x Fx
h. Everyone loves everyone who loves anyone, Someone loves

someone ⇒ Everyone loves everyone
i. Something is such that nothing other than it is done ⇔ At

most one thing is done
2. Use derivations to check each of the claims below; if a derivation

indicates that a claim fails, describe a structure that divides an open
gap. You need not worry about infinite derivations.
a. ∃x Fx, ∃x Gx ⇒ ∃x (Fx ∧ Gx)
b. ∃x (Fx ∧ Gx), ∃x (Fx ∧ Hx), ∀x (Fx → ∀y (Fy → x = y)) ⇒ ∃x

(Gx ∧ Hx)
3. In the following, choose one of each bracketed pair of premises and

one each bracketed pair of words or phrases in the conclusion so as
to make a valid argument; then analyze the premises and
conclusion and construct a derivation to show that the argument is
valid.
a. Some road sign was colored

[Every stop sign was a road sign | Every road sign was a
traffic marker]

[If anything was red, it was colored | If anything was
colored, it was painted]

Some [stop sign | traffic marker] was [red | painted]
b. Someone who owns a snake was pleased

[Every cobra is a snake | Every snake is a reptile]

Someone who owns a [cobra | reptile] was pleased
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8.5.xa. Exercise answers

1. Some of the derivations below are given in two forms, one that does
not use EG and another that does.

 a. │∃x Fx 1
│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga

│││∀x ¬ Gx a:5
││├─

5 UI │││¬ Ga (6)
│││●
││├─

6 Nc │││⊥
│├─

4 NcP ││∃x Gx 1
├─

1 PCh │∃x Gx

 │∃x Fx 1
│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga (4)
4 EG ││∃x Gx X, (5)

││●
│├─

5 QED││∃x Gx 1
├─

1 PCh │∃x Gx

 b. │∃x (Fx ∧ Gx) 1
│∀x (Gx → Hx) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (7)
2 Ext ││Ga (4)
3 UI ││Ga → Ha 4
4 MPP││Ha (8)

││
│││∀x ¬ (Fx ∧ Hx) a:6
││├─

6 UI │││¬ (Fa ∧ Ha) 7
7 MPT│││¬ Ha (8)

│││●
││├─

8 Nc │││⊥ 5
│├─

5 NcP ││∃x (Fx ∧ Hx) 1
├─

1 PCh │∃x (Fx ∧ Hx)

 │∃x (Fx ∧ Gx) 1
│∀x (Gx → Hx) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (5)
2 Ext ││Ga (4)
3 UI ││Ga → Ha 4
4 MPP││Ha (5)
5 Adj ││Fa ∧ Ha X, (6)
6 EG ││∃x (Fx ∧ Hx) X, (7)

││●
│├─

7 QED││∃x (Fx ∧ Hx) 1
├─

1 PCh │∃x (Fx ∧ Hx)



 c. │∀x (Fx → Ga) b:3
├─
││∃x Fx 2
│├─
││ⓑ
│││Fb (4)
││├─

3 UI │││Fb → Ga 4
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 PCh ││Ga 1
├─

1 CP │∃x Fx → Ga

  │∃x Fx → Ga 4
├─
│ⓑ
│││Fb (8)
││├─
││││¬ Ga (4)
│││├─

4 MTT││││¬ ∃x Fx 5
││││
││││││∀x ¬ Fx b:7
│││││├─

7 UI ││││││¬ Fb (8)
││││││●
│││││├─

8 Nc ││││││⊥ 6
││││├─

6 NcP │││││∃x Fx 5
│││├─

5 CR ││││⊥ 3
││├─

3 IP │││Ga 2
│├─

2 CP ││Fb→Ga 1
├─

1 UG │∀x (Fx → Ga)

 │∃x Fx → Ga 4
├─
│ⓑ
│││Fb (3)
││├─

3 EG │││∃x Fx X, (4)
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 CP ││Fb → Ga 1
├─

1 UG │∀x (Fx → Ga)

 d. │Fa (3)
├─
││∀x ¬ (x = a ∧ Fx) a:2
│├─

2 UI ││¬ (a = a ∧ Fa) 3
3 MPT││¬ a = a (4)

││●
│├─

4 DC ││⊥ 1
├─

1 NcP │∃x (x = a ∧ Fx)

 │Fa (2)
├─

1 EC │a = a X, (2)
2 Adj │a = a ∧ Fa X, (3)
3 EG │∃x (x = a ∧ Fx) X, (4)

│●
├─

4 QED│∃x (x = a ∧ Fx)

  │∃x (x = a ∧ Fx) 1
├─
│ⓑ
││b = a ∧ Fb 2
│├─

2 Ext ││b = a a—b
2 Ext ││Fb (3)

││●
│├─

3 QED=││Fa 1
├─

1 PCh │Fa

 e. │∃x (Fx ∧ ∀y Rxy) 2
├─
│ⓐ
││ⓑ
│││Fb ∧ ∀y Rby 3
││├─

3 Ext │││Fb (6)
3 Ext │││∀y Rby a:7

│││
││││∀y ¬ (Fy ∧ Rya) b:5
│││├─

5 UI ││││¬ (Fb ∧ Rba) 6
6 MPT││││¬ Rba (8)
7 UI ││││Rba (8)

││││●
│││├─

8 Nc ││││⊥ 4
││├─

4 NcP │││∃y (Fy ∧ Rya) 2
│├─

2 PCh ││∃y (Fy ∧ Rya) 1
├─

1 UG │∀x ∃y (Fy ∧ Ryx)

 │∃x (Fx ∧ ∀y Rxy) 2
├─
│ⓐ
││ⓑ
│││Fb ∧ ∀y Rby 3
││├─

3 Ext │││Fb (5)
3 Ext │││∀y Rby a:4
4 UI │││Rba (5)
5 Adj │││Fb ∧ Rba X, (6)
6 EG │││∃y (Fy ∧ Rya) X, (7)

│││●
││├─

7 QED│││∃y (Fy ∧ Rya) 2
│├─

2 PCh ││∃y (Fy ∧ Rya) 1
├─

1 UG │∀x ∃y (Fy ∧ Ryx)



 f. │∃x (Gx ∧ Fx) 1
│¬ Fa (6)
├─
│ⓑ
││Gb ∧ Fb 2
│├─

2 Ext ││Gb (5)
2 Ext ││Fb (6)

││
│││∀x ¬ (¬ x = a ∧ Gx) b:4
││├─

4 UI │││¬ (¬ b = a ∧ Gb) 5
5 MPT│││b = a a—b

│││●
││├─

6 Nc= │││⊥ 3
│├─

3 NcP ││∃x (¬ x = a ∧ Gx) 1
├─

1 PCh │∃x (¬ x = a ∧ Gx)

 g. │∀x (Fx → Ga) c:3
│∀x (Ga → Fx) b:5
│∃x Fx 2
├─
│ⓑ
││ⓒ
│││Fc (4)
││├─

3 UI │││Fc → Ga 4
4 MPP│││Ga (6)
5 UI │││Ga → Fb 6
6 MPP│││Fb (7)

│││●
││├─

7 QED│││Fb 2
│├─

2 PCh ││Fb 1
├─

1 UG │∀x Fx

 h. (∀x: Px) (∀y: Py ∧ (∃z: Pz) Lyz) Lxy 

(∃x: Px) (∃y: Py) Lxy

(∀x: Px) (∀y: Py) Lxy

│∀x (Px → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lxy)) b:7, a:14
│∃x (Px ∧ ∃y (Py ∧ Lxy)) 5
├─
│ⓐ
│││Pa (15)
││├─
│││ⓑ
│││││Pb (8), (19)
││││├─
│││││ⓒ
││││││Pc ∧ ∃y (Py ∧ Lcy) 6
│││││├─

6 Ext ││││││Pc (12), (17)
6 Ext ││││││∃y (Py ∧ Lcy) 10
7 UI ││││││Pb → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) 8
8 MPP ││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) c:9
9 UI ││││││(Pc ∧ ∃z (Pz ∧ Lcz)) → Lbc 13

││││││
││││││ⓓ
│││││││Pd ∧ Lcd (11)
││││││├─

11 EG │││││││∃z (Pz ∧ Lcz) X, (12)
12 Adj │││││││Pc ∧ ∃z (Pz ∧ Lcz) X, (13)
13 MPP │││││││Lbc (17)
14 UI │││││││Pa → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) 15
15 MPP │││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) b:16
16 UI │││││││(Pb ∧ ∃z (Pz ∧ Lyz)) → Lab 20
17 Adj │││││││Pc ∧ Lbc X, (18)
18 EG │││││││∃z (Pz ∧ Lbz) X, (19)
19 Adj │││││││Pb ∧ ∃z (Pz ∧ Lbz) X, (20)
20 MPP│││││││Lab (21)

│││││││●
││││││├─

21 QED │││││││Lab 10
│││││├─

10 PCh ││││││Lab 5
││││├─

5 PCh │││││Lab 4
│││├─

4 CP ││││Pb → Lab 3
││├─

3 UG │││∀y (Py → Lay) 2
│├─

2 CP ││Pa → ∀y (Py → Lay) 1
├─

1 UG │∀x (Px → ∀y (Py → Lxy))

Note that stages 10 and 11 serve only to move us from ∃y (Py ∧ Lcy) to 
∃z (Pz ∧ Lcz)—i.e., to change a bound variable. If sentences that differ
only in the choice of a letter for a bound variable are regarded as the
same (or if a different variable had been chosen when analyzing the
second premise), the assumption Pc ∧ ∃y (Py ∧ Lcy) could be used as a
premise for MPP and stages 10-12 would not be needed.



 i. ∃x ¬ (∃y: ¬ y = x) Dy ⇔ ¬ ∃x (∃y: ¬ y = x) (Dx ∧ Dy)

│∃x ¬ ∃y (¬ y = x ∧ Dy) 2
├─
││∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) 3
│├─
││ⓐ
│││¬ ∃y (¬ y = a ∧ Dy) 7
││├─
│││ⓑ
││││∃y (¬ y = b ∧ (Db ∧ Dy)) 4
│││├─
││││ⓒ
│││││¬ c = b ∧ (Db ∧ Dc) 5
││││├─

5 Ext │││││¬ c = b (13)
5 Ext │││││Db ∧ Dc 6
6 Ext │││││Db (10)
6 Ext │││││Dc (12)

│││││
│││││││∀y ¬ (¬ y = a ∧ Dy) b:9, c:11
││││││├─

9 UI │││││││¬ (¬ b = a ∧ Db) 10
10 MPT│││││││b = a a—b, c
11 UI │││││││¬ (¬ c = a ∧ Dc) 12
12 MPT│││││││c = a a—b—c

│││││││●
││││││├─

13 DC │││││││⊥ 8
│││││├─

8 NcP ││││││∃y (¬ y = a ∧ Dy) 7
││││├─

7 CR │││││⊥ 4
│││├─

4 PCh ││││⊥ 3
││├─

3 PCh │││⊥ 2
│├─

2 PCh ││⊥ 1
├─

1 RAA │¬ ∃x ∃y (¬ y = x ∧ (Dx ∧ Dy))

  │¬ ∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) (12)
├─
││∀x ∃y (¬ y = x ∧ Dy) a:2, b:5
│├─

2 UI ││∃y (¬ y = a ∧ Dy) 3
││
││ⓑ
│││¬ b = a ∧ Db 4
││├─

4 Ext │││¬ b = a
4 Ext │││Db (8)
5 UI │││∃y (¬ y = b ∧ Dy) 6

│││
│││ⓒ
││││¬ c = b ∧ Dc 7
│││├─

7 Ext ││││¬ c = b (9)
7 Ext ││││Dc (8)
8 Adj ││││Db ∧ Dc X, (9)
9 Adj ││││¬ c = b ∧ (Db ∧ Dc) X, (10)
10 EG││││∃y (¬ y = b ∧ (Db ∧ Dy)) X, (11)
11 EG││││∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) X, (12)

││││●
│││├─

12 Nc ││││⊥ 6
││├─

6 PCh│││⊥ 3
│├─

3 PCh││⊥ 1
├─

1 NcP│∃x ¬ ∃y (¬ y = x ∧ Dy)

2. a. │∃x Fx 1
│∃x Gx 2
├─
│ⓐ
││Fa (5)
│├─
││ⓑ
│││Gb (7)
││├─
││││∀x ¬ (Fx ∧ Gx) a:4, b:6
│││├─

4 UI ││││¬ (Fa ∧ Ga) 5
5 MPT││││¬ Ga
6 UI ││││¬ (Fb ∧ Gb) 7
7 MPT││││¬ Fb

││││○ Fa,¬ Fb,¬ Ga,Gb ⇏ ⊥
│││├─
││││⊥ 3
││├─

3 NcP │││∃x (Fx ∧ Gx) 2
│├─

2 PCh ││∃x (Fx ∧ Gx) 1
├─

1 PCh │∃x (Fx ∧ Gx)



 b. │∃x (Fx ∧ Gx) 1
│∃x (Fx ∧ Hx) 3
│∀x (Fx → ∀y (Fy → x = y)) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (6)
2 Ext ││Ga (11)

││
││ⓑ
│││Fb ∧ Hb 4
││├─

4 Ext │││Fb (8)
4 Ext │││Hb (12)
5 UI │││Fa → ∀y (Fy → a = y) 6
6 MPP │││∀y (Fy → a = y) b:7
7 UI │││Fb → a = b 8
8 MPP │││a = b a—b

│││
││││∀x ¬ (Gx ∧ Hx) a:10
│││├─

10 UI ││││¬ (Ga ∧ Ha) 11
11 MPT││││¬ Ha (12)

││││●
│││├─

12 Nc=││││⊥ 9
││├─

9 NcP │││∃x (Gx ∧ Hx) 3
│├─

3 PCh ││∃x (Gx ∧ Hx) 1
├─

1 PCh │∃x (Gx ∧ Hx)

3. a. (∃x: Sx) Cx 
(∀x: Sx) Tx 
∀x (Cx → Px)

(∃x: Tx) Px

│∃x (Sx ∧ Cx) 1
│∀x (Sx → Tx) a:3
│∀x (Cx → Px) a:5
├─
│ⓐ
││Sa ∧ Ca 2
│├─

2 Ext ││Sa (4)
2 Ext ││Ca (6)
3 UI ││Sa → Ta 4
4 MPP││Ta (7)
5 UI ││Ca → Pa 6
6 MPP││Pa (7)
7 Adj ││Ta ∧ Pa X, (8)
8 EG ││∃x (Tx ∧ Px) X, (9)

││●
│├─

9 QED││∃x (Tx ∧ Px) 1
├─

1 PCh │∃x (Tx ∧ Px)



 b. (∃x: Px ∧ (∃y: Sy) Oxy) Dx 
(∀x: Sx) Rx

(∃x: Px ∧ (∃y: Ry) Oxy) Dx

│∃x ((Px ∧ ∃y (Sy ∧ Oxy)) ∧ Dx) 1
│∀x (Sx → Rx) b:6
├─
│ⓐ
││(Pa ∧ ∃y (Sy ∧ Oay)) ∧ Da 2
│├─

2 Ext ││Pa ∧ ∃y (Sy ∧ Oay) 3
2 Ext ││Da (11)
3 Ext ││Pa (10)
3 Ext ││∃y (Sy ∧ Oay) 3

││
││ⓑ
│││Sb ∧ Oab 5
││├─

5 Ext │││Sb (7)
5 Ext │││Oab (8)
6 UI │││Sb → Rb 7
7 MPP │││Rb (8)
8 Adj │││Rb ∧ Oab X, (9)
9 EG │││∃y (Ry ∧ Oay) X, (10)
10 Adj │││Pa ∧ ∃y (Ry ∧ Oay) X, (11)
11 Adj │││(Pa ∧ ∃y (Ry ∧ Oay)) ∧ Da X, (12)
12 EG │││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) X, (13)

│││●
││├─

13 QED│││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) 4
│├─

4 PCh ││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) 1
├─

1 PCh │∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx)

Glen Helman  15 Aug 2006


