
7.5. General arguments

7.5.0. Overview

We have answered questions about entailment concerning truth-
functional compounds by turning them into questions about their
immediate components (or sentences contradictory to them). The
largest component formulas of sentences formed by quantifiers usually
contain free variables, so we will look at the sentences that are the result
of putting closed terms in place of these variables.

7.5.1. Conjunction and universal quantification  
An unrestricted universal sentence behaves like a conjunction of
sentences saying of each particular thing what the universal says of
everything.

7.5.2. Instantiation  
The laws of entailment for unrestricted universals treat them as
conjunctions of their instances for particular things. However, a
universal behaves like a conjunction with indefinitely many conjuncts:
it entails each of its instances but cannot be replaced by them.

7.5.3. Generalization  
The instances of a universal are all predications of the same abstract,
and this makes it possible to establish a universal by way of a single
“typical” instance.

7.5.4. Adding instances  
Because a universal has indefinitely many instances, we cannot
consider each in a derivation. Instead, we exploit a generalization
only partially to extract those instances that are relevant to the
argument we are considering.

7.5.5. General arguments in derivations  
To insure that we establish an instance of a universal in a way that
admits generalization, we construct it for a new term that is permitted
only a limited scope in the generalization.

7.5.6. Syllogisms  
The rules for the unrestricted universal enable us to establish, among
other things, the validity of arguments from a special class
traditionally labeled “syllogisms” (in a narrow sense of the term).
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7.5.1. Conjunction and universal quantification

The truth conditions of generalizations are analogous to those of
conjunctions. So, before looking at laws and rules for the universal
quantifiers, we will spend some time comparing these operations to
conjunction.

Consider the pair of sentences analyzed below.

Every permanent member of the Security Council supported the resolution 

(∀x: Mxs) Sxl 

Britain, China, France, Russia, and the U. S. supported the resolution 

Sbl ∧ Scl ∧ Sfl ∧ Srl ∧ Sul

M: [ _ is a member of _ ]; S: _ supported _ ; b: Britain; c: China; f: France; l: the
resolution; r: Russia; s: the Security Council; u: the U. S.

These two sentences have the same truth value, but they are not
equivalent because in a different possible world the membership of the
Security Council could be different.

However, consider the sentence

Each of Britain, China, France, Russia, and the U. S. supported the resolution

This could be analyzed in the same way as the second sentence above,
but it could be analyzed also as a restricted universal whose restricting
predicate is [ _ is Britain, China, France, Russia, or the U. S.]—
switching to or here for the same reasons that lead to us switch in
handling all boys and girls (see 7.3.2 ). A full analysis would give us the
following:

(∀x: x=b ∨ x=c ∨ x=f ∨ x=r ∨ x=u) Sxl

And this universal is equivalent to the conjunction because either way
we say that the predicate [ _ supported l] is true of the reference values
of b, c, f, r, and u.

Each of the universals (∀x: ρx) θx and ∀x θx says that the predicate θ
is true of each value in the domain over which it generalizes. Only in
special cases (like the example just above) will either be equivalent to a
conjunction

θτ  ∧ θτ  ∧ … ∧ θτ
that predicates θ of each of a series of terms. But it can still be
enlightening to compare universals to such conjunctions, so we will
develop some vocabulary for doing so. We will do this only for
unrestricted universals since it is those that we will focus on in
derivations.

1 2 n



Let us say that an instance for a term τ of a universal ∀x θx is a
sentence θτ that applies the quantified predicate θ to τ—that is, an
instance of a universal ∀x … x … has the form … τ …, the result of
putting τ in place of the occurrences of that variable x that are bound to
the quantifier ∀x. An instance asserts of a single reference value what
the universal asserts of everything in its domain.

If every reference value is the extension of some term, an unrestricted
universal ∀x θx will be true if and only if each of its instances θτ is true.
This means that it will behave like a conjunction of these instances. But
this is not to say that we could work with such a conjunction in place of
the universal because, given just one unanalyzed term and one functor,
there will be infinitely many compound terms and infinitely many
instances of any universal whose quantifier actually binds a variable.
For example, given an unanalyzed term a and functor f, the language
will contain the terms

a, fa, f(fa), f(f(fa)), …

and a universal ∀x Px will have the instances

Pa, P(fa), P(f(fa)), P(f(f(fa))), …

Although it is possible to make sense of infinite conjunctions if there is
no expectation that it be possible to write them down, our references to
conjunctions of all instances will be only a figure of speech used to
motivate and guide our treatment.

For an unrestricted universal to behave like a conjunction of its
instances, every reference value must be the value of some term. So let
us develop the figure of speech further by imagining that the ID of each
reference value in a range R is added as a further term of our language.
We will speak of this operation as expansion by R. If we expand the
language by the range R of a structure, an unrestricted universal ∀x θx
will be true in that structure if and only if all its instances are true.
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7.5.2. Instantiation

The special features of the laws of entailment we will state for the
universals can be traced to two sources. One is the analogy with
conjunction we have just explored. The other is a pair of differences
between what we have said about universals and what we may say about
ordinary conjunctions.

The first difference lies in the fact that the principles of entailment for
universals must hold for all structures, so they cannot depend on special
assumptions about the range R of reference values. This means, in
particular, that the set of “components” of a universal (i.e., its instances
in an expansion by R) must be left indefinite while an ordinary
conjunction has a definite and, indeed, finite set of components. This
would make universals difficult to deal with were it not for their second
difference from conjunctions. The components of an ordinary
conjunction can be any pair of sentences so they need have nothing in
common, and we must consider them individually; but the instances of
a universal all follow the same pattern, differing only in occurrences of a
single term, so we can speak of them all together by speaking of this
pattern. We will look at the effects of this second difference more closely
in the next subsection when we consider the role of universals as
conclusions. For the moment, we will concentrate on their role as
premises.

We will develop laws for universals by taking certain laws for
conjunctions as our model and modifying them to take account of the
differences just outlined. In considering universals as premises, the laws
for conjunction we will work from are the following:

φ ∧ ψ ⇒ φ 
φ ∧ ψ ⇒ ψ

Although these principles are clearly associated with the rule of
Extraction, they are less far reaching than our law for conjunction as a
premise. The fact that we focus on them is due to the first difference
between universals and conjunction: the law for conjunction as a
premise says we can replace a conjunction by its components, but there
is no hope of doing anything like this for a universal since it has no one
definite set of instances.

When taken together, these laws say that a conjunction implies each
of its components. The analogous claim about an unrestricted universal
is that it implies each of its instances. This is a principle known as
universal instantiation:



∀x θx ⇒ θτ for each term τ
Or, using an alternative notation, ∀x … x … ⇒ … τ … . For example, the
sentence Everything is fine and dandy implies the claim The weather
is fine and dandy as well as other sentences of the form τ is fine and
dandy.

The principle of universal instantiation is not quite what we will take
as our account of the unrestricted universal as a premise. Universal
instantiation can be used along with the law of lemmas to develop a
derivation by adding any instance of a universal premise as a further
resource.

LAW FOR THE UNRESTRICTED UNIVERSAL AS A PREMISE. Γ, ∀x θx ⇒ φ if and
only if Γ, ∀x θx, θτ ⇒ φ (for any set Γ, sentence φ, predicate θ, and
term τ)

Since the only if part of this claim follows from the monotonicity of
entailment, the key property of the universal lies in the if part: an
argument with a universal as a premise is valid if the result of adding an
instance as a further premise is valid. That is, when establishing the
validity of an argument with universal premise, we are free to add any
instance as a further premise. Note that the instance is added as a
further premise. This is required for the only if part to be true. We
cannot drop the universal because we cannot expect its content to be
exhausted by a single instance; Everything is fine and dandy, for
example, has implications for things other than the weather. As you
might expect, our inability to drop the universal from the premises will
some cause complications when we try to implement this law in
derivations.

We will not be considering derivations for restricted quantifiers in
their own right. Arguments involving them can be captured by way of
their restatements using unrestricted quantifiers, and the principles
governing these quantifiers can be derived directly from those governing
the unrestricted quantifiers and the conditional. For example, in the
case of the restricted universal as a premise, we have the following

Γ, (∀x: ρx) θx ⇒ ⊥ if and only if both Γ, (∀x: ρx) θx ⇒ ρτ and Γ, (∀x: ρx) θx, θτ ⇒ ⊥ 

Γ, (∀x: ρx) θx, ρτ ⇒ φ if and only if Γ, (∀x: ρx) θx, ρτ, θτ ⇒ φ 

Γ, (∀x: ρx) θx, ¬  θτ ⇒ φ if and only if Γ, (∀x: ρx) θx, ¬  ρτ, ¬  θτ ⇒ φ

The first is the key principle. It reflects aspects of the laws for
unrestricted universals and for conditionals as premises. It is from the
latter that it derives its restriction to reductio arguments. Notice that
the two entailments on the right show that the term τ refers to a
counterexample to the derivation, with the first showing that it is in the

± ± ±

counterexample to the derivation, with the first showing that it is in the
domain and the second reducing to absurdity the claim that it has the
attribute. The other two principles reflect aspects of the modus ponens
and modus tollens: if we know that τ refers to something in the domain
of a generalizaiton whose truth we are assuming, we can add the
assumption that this thing has the attribute and, if we know that it does
not have the attribute, we can add the assumption that it is not in the
domain. In short, there are three key ways to use a restricted universal
assumption: to reduce to absurdity any assumption that something is a
counterexample, to show that something has its attribute (when it is
assumed to be in the domain), and to show that something is not in the
domain (when it is assumed not to have the attribute).
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7.5.3. Generalization

Next let us look at the role of an unrestricted universal as a conclusion.
Here we have the law for conjunction as a conclusion to use as a model.

Γ ⇒ φ ∧ ψ if and only if Γ ⇒ φ and Γ ⇒ ψ.

We have to expect changes, though, because that law gives separate
consideration to each of the two components of the conjunction and we
cannot expect to do this for the instances of a universal. Still, the law for
conjunction points us in the right direction: we should look for some
way of connecting the validity of a universal conclusion with the validity
of arguments having its instances as conclusions.

A connection like this is used in geometric proofs when we begin by
saying, for example, “Let ABC be a triangle,” and then go on to use our
conclusions concerning ABC to justify general conclusions about all
triangles. That is, we sometimes establish universal claims by
generalizing from particular instances of them.

Clearly not every generalization from a particular instance will be
legitimate. Certain premises may entail The Empire State Building is
tall without entailing Every building is tall. In a geometric argument
concerning a triangle ABC, we limit the information that we may use
about the instance that we are considering to what we may establish
concerning any triangle. For example, we ignore the fact we are using a
diagram that shows ABC as acute or obtuse, and we probably avoid
drawing it as a right triangle or an isosceles triangle to begin with. These
restrictions are sometimes expressed by saying that we are arguing
about an arbitrary or an arbitrarily chosen triangle. The idea is that
what you say about the triangle ABC should hold for a triangle chosen at
random or even one chosen by your worst enemy. Let us call an
argument like this a general argument since it argues for an instance
in a way that will hold generally for values in the domain of a universal.

The law we are looking for should say that an unrestricted universal is
a valid conclusion from given premises if we can establish an instance of
it by a general argument. But we need to make this more precise. In
particular, we need to say how we can recognize a general argument just
by looking at the logical forms of the sentences it involves.

If we were to give instructions for making a general argument about a
triangle ABC, one thing we might say is that we should not use any
special assumptions about ABC. If we are going to generalize about
triangles, we may assume that ABC is a triangle but we should not
assume that it is acute or obtuse. This is just another way of saying that
we should not use special information about this triangle, but it suggests

an idea we can apply to arguments when we know only their logical
forms. Since we are considering arguments for unrestricted universals,
we must be able to generalize not just about triangles, or some other
limited class, but about everything; and that means we should use no
assumptions at all about the term from which we wish to generalize. To
insure that we do not use an special assumptions about a term τ when
we generalize from an instance θτ to a universal ∀x θx, we will require
that τ not appear in our assumptions. For reasons we will consider in
7.6.1 , we will require also that τ not appear in the predicate θ and that
it be unanalyzed so that it not only does not appear in the assumptions
or θ but in fact shares no vocabulary with them.

Even setting aside these further requirements, you may have noticed
a couple of jumps here. Saying we have an assumption containing τ is
different from saying we have used that assumption, and saying that τ
appears in an assumption is different from saying that the assumption
provides special information about τ. For example, The weather is fine
and dandy and so is everything else mentions the weather without
constituting a special assumption about it (since the same assumption is
made about everything). Still, the requirement that the term from which
we generalize not appear in the assumptions is easy to check and using
it will not limit the entailments we can establish, only the terms we can
use to establish them.

These restrictions appear in our law stating the conditions under
which a universal can be validly concluded.

LAW FOR THE UNRESTRICTED UNIVERSAL AS A CONCLUSION. Γ ⇒ ∀x θx if and
only if Γ ⇒ θα (for any set Γ and predicate θ and any unanalyzed
term α that appears in neither Γ nor θ)

Let us say that an unanalyzed term appearing in neither the premises or
conclusion of an argument is independent with respect to that
argument. In this vocabulary, the law says that an argument with an
unrestricted universal conclusion is valid if and only if the premises
entail an instance of the universal for an independent term. When
arguments are stated in English, phrases like let α be arbitrary or let
us choose α arbitrarily function as commitments to use the term α as
an independent term.

The crucial part of this law is the if claim since the only-if part says
only that a universal cannot be a valid conclusion unless any instance
for an independent term is also valid, something that follows from the
principle of universal instantiation. The key idea behind the truth of the
if part is that, because the independent term α is unanalyzed and does



not appear in either Γ or θ, it could be made to refer to anything
without affecting the premises Γ or the predicate θ. And this means that,
if the premises suffice to entail θα, they suffice to show that θ is true of
everything—i.e., that the universal ∀x θx is true. Indeed, given a proof of
θα from the premises Γ, we could construct a proof of θτ for any term τ
simply by replacing every occurrence of α by τ, our restrictions on α
insuring that the premises Γ and θ remain unchanged and that α had no
ties to them that are not shared by τ.

This argument recalls the comparison of the universal with
conjunction. Since a conjunction can have any components, we must
argue for each component individually and, since a conjunction has only
two components, there is nothing to keep us from doing this. On the
other hand, there would be no hope of providing a separate argument
for each instance of a universal since, in general, there is no way of
setting a limit on the number of instances it has. However, there is no
need to consider each of these instances individually since they all have
the same form, so an argument establishing an instance for one
independent term can set the pattern for all of the rest.

A principle for the restricted universal as a conclusion follows from
this law and the law for the conditional as a conclusion:

Γ ⇒ (∀x: ρx) θx if and only if Γ, ρα ⇒ θα (where α is unanalyzed and
does not appear in Γ, ρ, or θ)

That is, we can establish a restricted generalization by showing that an
arbitrarily chosen object has the attribute when we assume that it is in
the domain.
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7.5.4. Adding instances

The implementation of the laws for universal quantifiers is fairly
straightforward if we use derivations only in a positive way—i.e., use
them only to show that entailments hold. Their use to show that
entailments fail will be postponed until 7.7. We will consider only the
unrestricted universal. Rules for restricted universals present no special
difficulties and, indeed, can be seen as simply abbreviations for
combinations of rules for the unrestricted universal and the conditional.

The exploitation rule for universals, which we will call Universal
Instantiation (UI), is shown in Figure 7.5.4-2. It can be used to add
any instance of the universal as a further resource, notating the
universal to indicate the term for which an instance was added.

│…
│∀x … x …
│…
││…
││
││
│├─
││φ
│…

→

│…
│∀x … x … τ:n
│…
││…

n UI││… τ …
││
│├─
││φ
│…

Fig. 7.5.4-2. Developing a derivation at stage n by exploiting an
unrestricted universal for a term τ.

Although we record the use of this rule alongside the universal, the
universal resource is not rendered completely inactive. The rule
provides only a partial exploitation, extracting the content of the
universal only for the single term τ. Since a universal does not bring
with it any definite set of instances, it will never be rendered completely
inactive, no matter how often this rule is used. Still, one use of the rule
does exploit the universal for one term, and we record this by noting
both the stage number and the term for which the universal has been
exploited.

This information is used (much in the way we have used marking by
stage numbers) to judge when a universal is active for a given term.
To be active for a given term in a gap, a universal must be available in
the gap and must not have been exploited for the term in the course of
narrowing the gap. Specifically, an available universal is inactive for τ
in a gap if it is marked by a pair τ:n and all scope lines to the left of
some resource or goal entered at stage n continue unbroken to the left
of the gap. Although an available universal is always active, it may not
be active for all terms; and a term for which we apply the exploitation



be active for all terms; and a term for which we apply the exploitation
rule above should be one for which the universal is still active.

As we will see in 7.7.4 , it is legitimate to limit the use of this rule to
terms appearing in the available resources and goals the gap. These are
the same terms from which we form alias sets and it will be enough to
exploit a universal for at least one term from each alias set. But,
occasionally, no terms will appear in the initial premises and conclusion
and none will be introduced by other rules. When this is so, the
exploitation rule above may be used to introduce a new unanalyzed
term into the derivation.

For example, the premises and conclusion of the following derivation
above contain no terms at all, so there would be no way of beginning it
if we did not instantiate one of them for a new term.

│∀x Fx a:1
│∀x ¬ Fx a:2
├─

1 UI │Fa (3)
2 UI│¬ Fa (3)

│●
├─

3 Nc│⊥
This is the only sort of case in which instances need be added for terms
new to the gap being developed. The fact that we do so at all reflects the
assumption built into our system that there is at least one reference
value. The derivation above shows one consequence of this assumption
—namely, that Everything is finished and Everything is unfinished are
inconsistent. Clearly, if there is anything at all, then these two sentences
cannot both be true. On the other hand, if we were to drop the
assumption that there is something, both sentences could be true. For
generalizations are false only when they have counterexamples; and, in
a world in which there was nothing, there would be nothing to serve as a
counterexample to either Everything is finished or Everything is
unfinished. The assumption that there is something is perhaps the only
assumption typically regarded as part of deductive logic that might be
regarded as factual.

At the other extreme, use of this rule in case of generalizations
containing functors may introduce new terms into the derivation,
leading to new uses of the rule. For example, instantiating ∀x P(fx) for
the term a will give us P(fa), which contains the term fa, and we may use
this term also to instantiate the generalization, giving us P(f(fa)), which
contains the term f(fa)—and so on. As we will see in 7.7, this is one
aspect of a general feature of the deductive logic for generalizations that
will sometimes keep a derivation from ever reaching an end. That is not

will sometimes keep a derivation from ever reaching an end. That is not
our concern now, but the possibility of going on forever in the
application of rules shows that we can no longer wait to apply rules fully
before checking to see if a gap closes. And, because a large number of
applications of instantiation may be possible, it is wise to select from
among the terms with which we might instantiate a generalization those
that seem most likely to help us close a gap.

The following derivation keeps universal instantiation to a minimum.
Only the main quantifier is removed with each use of UI, so three uses
are required to reach the bare predication Rabc. Only two more are
needed to reach Racc but three would have been required to reach a
second predication, such as Rccc, that had a different term in the first
place after R.

│∀x ∀y ∀z Rxyz a:1
├─

1 UI │∀y ∀z Rayz b:2, c:4
2 UI │∀z Rabz c:3
3 UI │Rabc (6)
4 UI │∀z Racz c:5
5 UI │Racc (6)
6 Adj │Rabc ∧ Racc (7)

│●
├─

7 QED│Rabc ∧ Racc

On the other hand, a full use of instantiation for the terms appearing in
the conclusion would have lead to 3 + 3×3 + 3×9 = 39 uses of UI (i.e.,
three to exploit the premise for a, b, and c, three more exploitations for
each of the three resources that result, and finally three more for each of
the nine resources added in that way). A derivation is not damaged by
extra uses of UI any more than it is damaged by using Ext to add
conjuncts that are not needed later. But, while adding all conjuncts as
resources whenever a conjunction was exploited presented no practical
problem, using UI in all ways possible can lead to unmanageably large
derivations in the case of even fairly simple premises.
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7.5.5. General arguments in derivations

In order to manage general arguments in our system of derivations, we
need a further sort of scope line. The portion of a derivation that
constitutes a general argument will be marked by a scope line that is
flagged by the independent term on which we generalize (as shown in
Figure 7.5.5-1).

│…
│ⓐ
││
││…
││
│…

Fig. 7.5.5-1. A veil of ignorance flagged by the independent term a.

This flagging declares that the term is independent. Indeed, we will
require that a term flagging a scope line appear only to its right, so the
scope line will mark the scope of the term’s use. In either form, the
requirement is designed to insure that the independent term maintains
no ties to the outside of the general argument so that, within the
argument, it might refer to anything at all. For this reason, we will speak
of a scope line flagged by a term as a veil of ignorance.

The limitation of the appearance of the independent term to the
portion of the derivation marked by its scope line is more than is
necessary to stay in accord with the laws for universals as conclusions.
They require only that the term not appear in either the goal or the
active resources of the gap that the vertical line spans, but we will never
run short of terms and the stronger requirement is far easier to check.

Now, let us look at the planning rule for universal goals. It is known
as Universal Generalization (UG) and is shown in 7.5.5-2.

│…
││…
││
││
││
││
│├─
││∀x … x …
│…

→

│…
││…
││ⓐ
│││
││├─
│││… a … n
│├─

n UG││∀x … x …
│…

Fig. 7.5.5-2. Developing a derivation at stage n by planning for an
unrestricted universal; the independent term a may be any unanalyzed

term that is new to the derivation.

We try to reach our goal by a general argument, so we choose as our
independent term an unanalyzed term a that is new to the derivation.
An instance of ∀x θx for the term a is the goal of the general argument,
and further development of the gap lies on the other side of a veil of
ignorance concerning that independent term.

The short derivation shown below illustrates this rule. It shows that, if
a relation R is universal in the sense of holding of any pair of things,
then it is reflexive.

│∀x ∀y Rxy a:2
├─
│ⓐ

2 UI ││∀y Ray a:3
3 UI ││Raa (4)

││●
│├─

4 QED││Raa 1
├─

1 UG │∀x Rxx

At the initial stage here, there is no vocabulary from which a term may
be formed—and UI should be used to introduce new terms only as a last
resort—so we apply the planning rule to the universal conclusion. After
applying it, we have vocabulary for use with the exploitation rule, and
we apply it twice for the term a. It would have been legitimate to exploit
either universal resource for any other term τ as well, but that would not
have contributed to closing the gap.

The following derivation illustrates the limitations on the scope of a
term.

│∀x Rax c:2
│∀x ∀y (Rxy → ∀z Ryz) a:3
├─
│ⓒ

2 UI ││Rac (5)
3 UI ││∀y (Ray → ∀z Ryz) c:4
4 UI ││Rac → ∀z Rcz 5
5 MPP││∀z Rcz b:6
6 UI ││Rcb (7)

││●
│├─

7 QED││Rcb 1
├─

1 UG │∀x Rxb

The independent term used here could not have been either a or b since
both appear beyond the scope line of the general argument, one in a
premise and the other in the conclusion.



The derivation shown here minimizes the use of UI, and the particular
choice of instances needed to do this might not be obvious. Once the
first premise is instantiated for c, the next two instantiations are
designed to set up the use of MPP at stage 5; but that c is a better choice
at stage 2 than, say, b is probably less obvious. It is fine to experiment,
and there is no need to back up if you do not make the best choice. A
derivation is never damaged by extra uses of UI; and, when we go on to
use derivations to show the failure of entailments involving
generalizations in 7.7 , we will require that, before a derivation can
reach a dead end, any universal resource must be exploited for at least
term from each alias set.
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7.5.6. Syllogisms

We can now establish the validity of the forms of argument that are
syllogisms in the narrower of the traditional senses of the term.
Syllogisms in this sense are two-premised arguments whose component
sentences are analyzed as restricted generalizations or their denials with
quantified and restricting predicates that are unanalyzed. A syllogism
must contain exactly three such predicates, and each of these predicates
must appear in exactly two of the component sentences. The
generalizations that are asserted or denied in the premises and
conclusion can be affirmative or negative but all must be direct.

The constraints on predicates leave four possible figures
distinguished by whether each of restricting or quanitified predicates of
the conclusion appears in the same or different role in the premise in
which it also appears. For each choice of figure, there are 4 × 4 × 4 = 64
moods reflecting the choice of a form of sentence (an assertion or
denial of an affirmative or negative generalization). There are thus 256
syllogisms; and, of these, 15 are valid. This number is small enough that
they could all be named. These names were constructed to display the
mood of the syllogism in their choice of vowels and, in some of their
consonants, ways of establishing the validity of some syllogisms on the
basis of others.

Below is a derivation for the best known of these patterns. The name
of this syllogism, Barbara, is one of the few that does not sound like
the artificial construction it is.

│∀x (Mx → Qx) a:5
│∀x (Rx → Mx) a:3
├─
│ⓐ
│││Ra (4)
││├─

3 UI │││Ra → Ma 4
4 MPP│││Ma (6)
5 UI │││Ma → Qa 6
6 MPP│││Qa (7)

│││●
││├─

7 QED│││Qa 2
│├─

2 CP ││Ra → Qa 1
├─

1 UG │∀x (Rx → Qx)

The letters chosen for predicates in the analysis are designed to
highlight the figure. Notice that the restricting and quantified predicates
of the conclusion (R and Q) play the same roles when they appear in the



of the conclusion (R and Q) play the same roles when they appear in the
premises. The thrid predicate (M) is traditionally known as the middle
term. An example is All humans are mortal, All philosophers are
human ⇒ All philosophers are mortal.

Middle terms do not always stand between the other two in the range
of their application (as does human between philosopher and mortal);
but, in all valid syllogisms, the middle term provides the basis for the
relation between the other two predicates asserted in the conclusion and
thus stands between them in this sense.

This derivation also provides an example of the form that will be
taken by arguments involving restricted universals when they are
reformulated using unrestricted quantifiers. Were we to have special
rules for restricted universals, one kind of exploitation rule would have
the effect of the sort of combination of UI and MPP seen in stages 3 and
4 and again in stages 5 and 6 above. The planning role for a restricted
universal goal would have the effect of the sort of combination of UG
and CP in stages 1 and 2; in short, it would introduce a general
argument with a supposition that predicated the restricting predicate of
the generalization to the independent term and a goal that predicated
the quantified predicate.
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7.5.s. Summary

The universal quantifiers and conjunction may both be used to say
that each of a group of claims is true. This overlap in function
indicates an analogy between these logical constants that can be seen
also in the laws of entailment for them. The analogue to a component
of a conjunction is an instance  of a universal, in which the universal’s
quantified predicate is predicated a term. A universal is rarely
equivalent to an actual conjunction of its instances, but for a given
referential range R, it behaves like a possibly infinite conjunction of
instances in a language enriched by adding the IDs of all values in
R—i.e., it behaves like the conjunction of its instances in an
expansion  of the language by R. When we do not fix the range R, a
universal ∀x θx is not associated with any definite set of instances,
but we still know that its instances θτ are all predications of θ; and
these two features are reflected in the laws of entailment for
universals.

In the case of an unrestricted universal, we can state a principle of
universal instantiation , which says that the universal implies each of
its instances; and we may use this with the law for lemmas to get a
law for this sort of universal as a premise .

We can describe the role of an unrestricted universal as a conclusion
by using the idea of a general argument , in which an instance of a
generalization is established in such a way that we may generalize
from it to a universal claim. It is sufficient for an argument to be a
general one that the term for which the instance is given not be
compound, that it not appear in the premises, and that it not appear
in the generalization we wish to conclude. Such a term is an
independent term  with respect to the argument. The law for the
unrestricted conditional as a conclusion  then tells us that we can
conclude a universal from given premises when we can conclude an
instance of it for an independent term.

The rule for exploiting universal resources— Universal Instantiation
(UI) —should be used only for terms already appearing in the gap—
provided there is at least one such term. The exploitation of universals
can never be considered complete, and an available universal resource
is always an active resource; but exploitation rules do render
universals inactive for  particular terms and should be applied only to
terms for which the universal remains active.

In implementing the laws for universals as conclusions, we flag  scope



6

lines by terms that are being used as independent terms; such terms
can appear only to the right of their scope lines. We plan for an
unrestricted universal goal by planning to use the rule Universal
Generalization (UG) . It directs us to set up a flagged scope line with
an instance for the independent term as a new goal.

In its narrowest use, the term syllogism  refers to one of a group of
256 logical forms of two-premised arguments involving
generalizations and their denials. A syllogism is tranditional classified
according to the roles in the premises of restricting and quantified
predicates of the conclusion (its figure ) and the logical form of each
of the premises and conclusion (its mood ). A syllogism contains one
further predicate, the middle term , that, in a valid syllogism, provides
the link between the predicates in the conclusion. The best known
syllogism, named Barbara , is the only valid syllogism whose premises
each assert an affirmative generalization.
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7.5.x. Exercise questions

1. Give the instances of each of the following for the terms a, b, and c
(remembering that you will drop the main quantifier, and only the
main one, when giving an instance):

 a. ∀x Fx
 b. ∀y Fy
 c. ∀x Rxa
 d. ∀x Saxb
 e. ∀x ∀y Rxy
 f. ∀x (Fx → Gx)
 g. ∀x (Fx → Gd)
 h. ∀x (Fx → ∀y Rxy)
 i. ∀x (Fx → ∀x Rxx)
2. Use the system of derivations to establish each of the following. You

may use detachment and attachment rules.
 a. ∀x Fx, ∀x (Fx → Gx) ⇒ Ga
 b. ∀x (Fx ∧ Gx) ⇒ Fa ∧ Gb
 c. ∀x Rxa, ∀x (Rbx → Gx) ⇒ Ga
 d. ∀x ∀y Rxy, ∀x (Rxx → Gx) ⇒ Ga
 e. ∀x ∀y Rxy ⇒ (Rab ∧ Rbb) ∧ Rca
 f. ∀x Fx, ∀x (Fx → Gx) ⇒ ∀x Gx
 g. ∀x (Fx ∧ Gx) ⇔ ∀x Fx ∧ ∀x Gx
 h. Fa ⇔ ∀x (x = a → Fx)
 i. ∀x ∀y Rxy ⇒ ∀y Rya
 j. ∀x ∀y (Rxy → ¬ Ryx) ⇒ ∀x ¬ Rxx
 k. ∀x ∀y (gx = y → Fy) ⇒ ∀x F(g(hx))
3. In the following, certain alternative expressions are enclosed in

brackets and separated by vertical bars. Choose one of each
alternative pair of premises and one of each alternative pair of
words or phrases in the conclusion so as to make a valid argument;
then analyze the premises and conclusion and construct a
derivation to show that the argument is valid. You may use
detachment and attachment rules.

 a. Every road sign was colored
[Every stop sign was a road sign | Every road sign was a

traffic marker]
[If anything was red, it was colored | If anything was

colored, it was painted]

Every [stop sign | traffic marker] was [red | painted]



 b. No road sign was colored
[Every stop sign was a road sign | Every road sign was a

traffic marker]
[If anything was red, it was colored | If anything was

colored, it was painted]

No [stop sign | traffic marker] was [red | painted]
 c. Only road signs were colored

[Every stop sign was a road sign | Every road sign was a
traffic marker]

[If anything was red, it was colored | If anything was
colored, it was painted]

Only [stop signs | traffic markers] were [red | painted]
 d. Among road signs all except colored ones were replaced

[Every stop sign was a road sign | Every road sign was a
traffic marker]

[If anything was red, it was colored | If anything was
colored, it was painted]

Among [stop signs | traffic markers] all except [red |
painted] ones were replaced
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7.5.xa. Exercise answers

1.    instance for a instance for b instance for c

a. ∀x Fx  Fa  Fb  Fc

b. ∀y Fy  Fa  Fb  Fc

c. ∀x Rxa  Raa  Rba  Rca

d. ∀x Saxb  Saab  Sabb  Sacb

e. ∀x ∀y Rxy  ∀y Ray  ∀y Rby  ∀y Rcy

f. ∀x (Fx → Gx)  Fa → Ga  Fb → Gb  Fc → Gc

g. ∀x (Fx → Gd)  Fa → Gd  Fb → Gd  Fc → Gd

h. ∀x (Fx → ∀y Rxy)  Fa → ∀y Ray  Fb → ∀y Rby  Fc → ∀y Rcy

i. ∀x (Fx → ∀x Rxx)  Fa → ∀x Rxx  Fb → ∀x Rxx  Fc → ∀x Rxx

2. a. │∀x Fx a:1
│∀x (Fx → Gx) a:2
├─

1 UI │Fa (3)
2 UI │Fa → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga

 b. │∀x (Fx ∧ Gx) a:1, b:3
├─

1 UI │Fa ∧ Ga 2
2 Ext │Fa (5)
2 Ext │Ga
3 UI │Fb ∧ Gb 4
4 Ext │Fb
4 Ext │Gb (5)
5 Adj │Fa ∧ Gb (6)

│●
├─

6 QED│Fa ∧ Gb

 c. │∀x Rxa b:1
│∀x (Rbx → Gx) a:2
├─

1 UI │Rba (3)
2 UI │Rba → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga



 d. │∀x ∀y Rxy a:1
│∀x (Rxx → Gx) a:3
├─

1 UI │∀y Ray a:2
2 UI │Raa (4)
3 UI │Raa → Ga 4
4 MPP│Ga (5)

│●
├─

5 QED│Ga

 e. │∀x ∀y Rxy a:1, b:3
├─

1 UI │∀y Ray b:2
2 UI │Rab (5)
3 UI │∀y Rby b:4, a:6
4 UI │Rbb (5)
5 Adj │Rab ∧ Rbb X, (7)
6 UI │Rba (7)
7 Adj │(Rab ∧ Rbb) ∧ Rba X, (8)

│●
├─

8 QED│(Rab ∧ Rbb) ∧ Rba

 f. │∀x Fx a:2
│∀x (Fx → Gx) a:3
├─
│ⓐ

2 UI ││Fa (4)
3 UI ││Fa → Ga 4
4 MPP││Ga (5)

││●
│├─

5 QED││Ga 1
├─

1 UG │∀x Gx

 g. │∀x (Fx ∧ Gx) a:3,b:7
├─
││ⓐ

3 UI │││Fa ∧ Ga 4
4 Ext │││Fa
4 Ext │││Ga (5)

│││●
││├─

5 QED│││Fa 2
│├─

2 UG ││∀x Fx 1
│
││ⓑ

7 UI │││Fb ∧ Gb 8
8 Ext │││Fb
8 Ext │││Gb (9)

│││●
││├─

9 QED│││Gb 6
│├─

6 UG ││∀x Gx 1
├─

1 Cnj │∀x Fx ∧ ∀x Gx

 │∀x Fx ∧ ∀x Gx 1
├─

1 Ext │∀x Fx a:3
1 Ext │∀x Gx a:4

│ⓐ
3 UI ││Fa (5)
4 UI ││Ga (5)
5 Adj ││Fa ∧ Ga X, (6)

││●
│├─

6 QED││Fa ∧ Ga 2
├─

2 UG │∀x (Fx ∧ Gx)

  Reusing the term a as the independent term of the second general
argument of the derivation on the left would have caused no logical
problems since the two gaps are separate arguments boxed off from on
another; however, we will hold to the simplest interpretation of the scope
line and not allow terms flagging scope line to appear anywhere outside
their indicated scope.

 h. │Fa (3)
├─
│ⓑ
│││b = a a—b
││├─
│││●
││├─

3 QED=│││Fb 2
│├─

2 CP ││b = a → Fb 1
├─

1 UG │∀x (x = a → Fx)

 │∀x (x = a → Fx) a:2
├─
││¬ Fa (3)
│├─

2 UI ││a = a → Fa 3
3 MTT││¬ a = a (4)

││●
│├─

4 DC ││⊥ 1
├─

1 IP │Fa

 i. │∀x ∀y Rxy b:2
├─
│ⓑ

2 UI ││∀y Rby a:3
3 UI ││Rba (4)

││●
│├─

4 QED││Rba 1
├─

1 UG │∀y Rya

Here the term a cannot be used as the independent term of the general
argument because it already appears in the conclusion.



 j. │∀x ∀y (Rxy → ¬ Ryx) a:3
├─
│ⓐ
│││Raa (5), (6)
││├─

3 UI │││∀y (Ray → ¬ Rya) a:4
4 UI │││Raa → ¬ Raa 5
5 MPP│││¬ Raa (6)

│││●
││├─

6 Nc │││⊥ 2
│├─

2 RAA││¬ Raa 1
├─

1 UG │∀x ¬ Rxx

 k. │∀x ∀y (gx = y → Fy) ha:2
├─
│ⓐ

2 UI ││∀y (g(ha) = y → Fy) g(ha):3
3 UI ││g(ha) = g(ha) → F(g(ha)) 5
4 EC ││g(ha) = g(ha) X, (5)
5 MPP││F(g(ha)) (6)

││●
│├─

6 QED││F(g(ha)) 1
├─

1 UG │∀x F(g(hx))

3. a. Every road sign was colored 
Every stop sign was a road sign 
If anything was colored, it was painted
Every stop sign was painted

  │∀x (Dx → Cx) a:5
│∀x (Sx → Dx) a:3
│∀x (Cx → Px) a:7
├─
│ⓐ
│││Sa (4)
││├─

3 UI │││Sa → Da 4
4 MPP│││Da (6)
5 UI │││Da → Ca 6
6 MPP│││Ca (8)
7 UI │││Ca → Pa 8
8 MPP│││Pa (9)

│││●
││├─

9 QED│││Pa 2
│├─

2 CP ││Sa → Pa 1
├─

1 UG │∀x (Sx → Px)

 b. No road sign was colored 
Every stop sign was a road sign 
If anything was red, it was colored
No stop sign was red

  │∀x (Dx → ¬ Cx) a:5
│∀x (Sx → Dx) a:3
│∀x (Rx → Cx) a:7
├─
│ⓐ
│││Sa (4)
││├─

3 UI │││Sa → Da 4
4 MPP│││Da (6)
5 UI │││Da → ¬ Ca 6
6 MPP│││¬ Ca (8)
7 UI │││Ra → Ca 8
8 MTT│││¬ Ra (9)

│││●
││├─

9 QED│││¬ Ra 2
│├─

2 CP ││Sa → ¬ Ra 1
├─

1 UG │∀x (Sx → ¬ Rx)



 
 c. Only road signs were colored 

Every road sign was a traffic marker 
If anything was red, it was colored
Only traffic markers were red

  │∀x (¬ Dx → ¬ Cx) a:5
│∀x (Dx → Mx) a:3
│∀x (Rx → Cx) a:7
├─
│ⓐ
│││¬ Ma (4)
││├─

3 UI │││Da → Ma 4
4 MTT│││¬ Da (6)
5 UI │││¬ Da → ¬ Ca 6
6 MPP│││¬ Ca (8)
7 UI │││Ra → Ca 8
8 MTT│││¬ Ra (9)

│││●
││├─

9 QED│││¬ Ra 2
│├─

2 CP ││¬ Ma → ¬ Ra 1
├─

1 UG │∀x (¬ Mx → ¬ Rx)

 

 d. Among road signs, all except colored ones were replaced 
Every stop sign was a road sign 
If anything was colored, it was painted
Among stop signs, all except painted ones were replaced

  │∀x ((Dx ∧ ¬ Cx) → Lx) a:8
│∀x (Sx → Dx) a:4
│∀x (Cx → Px) a:6
├─
│ⓐ
│││Sa ∧ ¬ Pa 3
││├─

3 Ext │││Sa (5)
3 Ext │││¬ Pa (7)
4 UI │││Sa → Da 5
5 MPP │││Da (9)
6 UI │││Ca → Pa 7
7 MTT │││¬ Ca (9)
8 UI │││(Da ∧ ¬ Ca) → La 10
9 Adj │││Da ∧ ¬ Ca X, (10)
10 MPP│││La (11)

│││●
││├─

11 QED │││La 2
│├─

2 CP ││(Sa ∧ ¬ Pa) → La 1
├─

1 UG │∀x ((Sx ∧ ¬ Px) → Lx)
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