
6.3. Arguments involving equations

6.3.0. Overview

The basic principles of entailment for identity are among the most
familiar of logical principles; but, because equations do not have
sentential components, they will play a role in derivations that is quite
different from other logical forms we study.

6.3.1. Logical properties of identity  
For our purposes, identity amounts to sameness in all respects, a
sameness that implies interchangeability as input for any predicate or
functor.

6.3.2. A law for aliases  
Many of the valid conclusions from a group of equations can be
captured by rules telling when terms count as “co-aliases”—i.e., aliases
for the same thing.

6.3.3. Derivations for identity  
The key rules for identity are rules for closing gaps, but all rules can
be extended to reflect the interchangeability of co-aliases.

Glen Helman  15 Aug 2006

6.3.1. Logical properties of identity

The logical properties of identity come from two sources. One is the kind
of extension we have stipulated for this relation, the pairs of reference
values we say it is true of. The other is the requirement that predicates
and functors be extensional, that the compounds they form be
transparent to the reference values of their component terms. Properties
deriving from this second source are equally properties of the operations
of predication and functional application; but since they are not
properties of any particular predicate or functor, it is easiest to ascribe
them, along with properties of the first sort, to the logical constant =.
We will turn first to the properties of identity alone.

What do we know when we know that an equation τ = υ is true? Well,
we know that the terms τ and υ have the same reference value; loosely
speaking, we know that they name the same thing. (This is loose speech,
first, because the terms may not be names but rather definite
descriptions and, second, because the reference value of the terms may
be nil, in which case neither names anything.) So we might say that τ
and υ are each “aliases” of their common reference value. It will be
convenient to have a way of speaking of such terms in relation to each
other rather than in relation to their value, so let us say that they are
aliases in relation to each other—or, more briefly, that they are co-
aliases.

This leads us immediately to a property of identity. For the relation of
having the same reference value, of being co-aliases, is symmetric. It
does not order the two terms in any way; if we can assert it of them
taken in one order, we can equally we assert it of them the other way
around. This gives us our first principle for =:

LAW OF SYMMETRY FOR IDENTITY. τ = υ ⇒ υ = τ (for any terms τ and υ).

This principle is stated as an entailment, but it implies that the two
equations are equivalent since it licenses reversals of equations and we
can undo a reversal by reversing again.

Now suppose that we know not only that a term υ is an alias for a
term τ but also that τ is an alias for a term σ. All three terms must then
have the same reference value, so we could say that υ is an alias for σ.
Putting this more formally, we have a second principle:

LAW OF TRANSITIVITY FOR IDENTITY. σ = τ, τ = υ ⇒ σ = υ (for any terms σ, 
τ, and υ).

Again, there is a more symmetric principle lurking in the background—
namely, that any two of these three equations entails the third. But this
principle is harder to state compactly, and a fuller investigation of it



principle is harder to state compactly, and a fuller investigation of it
would show that it also relies on the law of symmetry.

The two laws we have stated tell us that certain equations are true if
others are, but they do not commit us categorically to the truth of any
equations at all. How do we know there are any true equations? Well,
what would it take for there to be none. Perhaps this would be so if were
no aliases in the ordinary sense and every reference value was the
extension of at most one term. We do not want to rule this out, for our
laws are supposed to be very general and should not make any
assumptions about the richness of our non-logical vocabulary. But even
in a case like this, if there is any term at all in our language, we can form
an equation with this term taken twice and the equation will be true.
And that is one way of stating a third principle for identity:

LAW OF REFLEXIVITY FOR IDENTITY. ⇒ τ = τ (for any term τ).

So there will be true equations if there are any equations at all.
We have found three properties of identity that derive from the kind

of extension we have stipulated for =. Collecting them, we have:

REFLEXIVITY. ⇒ τ = τ. 
SYMMETRY. τ = υ ⇒ υ = τ. 
TRANSITIVITY. σ = τ, τ = υ ⇒ σ = υ.

Identity is not the only predicate that has these properties. For example,
the predicate [ _ has the same shape as _ ] obeys analogous laws; and
that example should suggest many others. A predicate for which laws of
reflexivity, symmetry, and transitivity hold is said to express an
equivalence relation because such a relation attributes sameness in
some respect. For example, if we grant that a line is parallel to itself, we
can say that [ _ is parallel to _ ] expresses an equivalence relation; and
this relation attributes sameness in direction.

An extreme example of an equivalence relation is the relation that
holds between any pair of reference values (including any reference
value and itself). Since this relation never fails to hold there is no way
for it to violate any of the three laws, and it must be an equivalence
relation. The extension of the identity predicate is at the other extreme
of equivalence relations. If we represent the two in tabular form as
truth-valued functions of reference values, we have something like this.

0  1  2  3  …
0 T  T  T  T  …
1 T  T  T  T  …
2 T  T  T  T  …
3 T  T  T  T  …
…… … … … ⋱

= 0  1  2  3  …
0 T  F  F  F  …
1 F  T  F  F  …
2 F  F  T  F  …
3 F  F  F  T  
…… … …  ⋱

The first relation has T everywhere while the extension of = has T only
along the diagonal from the upper left to the lower right. Identity holds
in the fewest cases possible for an equivalence relation because, if any of
the pairs along the diagonal were dropped, the law of reflexivity would
not hold. Since identity thus expresses the narrowest equivalence
relation, we might think of it as expressing sameness in all respects.

Although the status of identity as the narrowest equivalence relation
derives from the extension we have stipulated for =, this does not
provide a property that we can express in laws for = alone. Our ability
to express the idea of sameness in all respects depends on the predicates
and functors we have available to express a variety of “respects.” What
we can say is that identity implies sameness with regard to each
predicate and functor, and we can find further properties of identity by
exploiting the consequences of idea. First consider a one-place predicate
—say [ _ is red]. Two things are the same with respect to redness if
both are red or neither is. Hence, to say that identity implies sameness
with respect to this predicate is say that an equation τ = υ implies that τ
is red and υ is red have the same truth value. We have no very good
way of expressing this sort of relation among three sentences directly,
but the symmetry of = means that it is enough to say that τ = υ and τ is
red together entail υ is red. Generalizing this to any one-place
predicate F leads us to assert the law

τ = υ, Fτ ⇒ Fυ.

This is as at least part of what is involved in saying that identity implies
sameness in all respects. In fact, if we put θ in place of F and thus allow
the predicate to be an abstract, this law says it all. But, for the moment,
we will consider only predicates that are not abstracts and say that an
equivalence relation that supports a law of this form for a given
predicate F is a congruence for F. An equivalence relation that
implies sameness with respect to redness (e.g., the extension of [ _ has
the same color as _ ]) is thus a congruence for [ _ is red]. (The source
of the term congruence is the geometrical relation of congruence, which
implies sameness with respect to size and shape though not with respect
to location.)



The form of this law ought to suggest something that is familiar from
elementary algebra, the use of an equation to replace one expression by
another. Now, in algebra we can equally well use more than one
equation to make several replacements simultaneously, and congruence
principles can take a similar form. Consider sameness with respect to
the relation expressed by a 2-place predicate such as [ _ is younger than
_ ]. Things that are the same in this respect should be younger than the
same things and have the same things younger than them. We can
express this idea compactly by the following:

τ  = υ , τ  = υ , τ  is younger than τ  ⇒ υ  is younger than υ
And we can claim this holds for 2-place predicates generally by stating
the law

τ  = υ , τ  = υ , Rτ τ  ⇒ Rυ υ .

In these statements, we have economized by speaking of both places of
the predicate in a single law. Since τ  and υ  could be the same term and
so could τ  and υ , the law covers cases where a change is made in only
one of the two places of R. An equivalence relation that supports a law
like this one for identity is said to be a congruence for the predicate
R. The relation of having the same age will be a congruence in this sense
for the relation expressed by [ _ is younger than _ ].

Now it should be clear that we might state a law like these two that
applies to identity and a predicate P with any number of places:

CONGRUENCE FOR P. τ  = υ , …, τ  = υ , Pτ …τ  ⇒ Pυ …υ  (for any
terms τ , …, τ , υ , …, υ  and any predicate P with n places).

A large part of what we mean by saying that identity implies sameness
in all respects can be captured by saying that it is a congruence for all
predicates.

A large part, but not all. We have not yet said anything about
functors. Here we can make the story short because the law we want is
more familiar. It is this:

CONGRUENCE FOR f. τ  = υ , …, τ  = υ  ⇒ fτ …τ  = fυ …υ  (for any
terms τ , …, τ , υ , …, υ  and any functor f with n places).

This says that an equation between compound terms fτ …τ  and fυ …υ
follows from equations between their corresponding components. We
can have laws like this for equivalence relations besides identity; and,
when we have such a law for an equivalence relation, the relation is said
to be a congruence for the functor f. The relation of having the same
absolute value (i.e., of being equal or differing only in sign) is a
congruence for a functor expressing the squaring function (or the cosine
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congruence for a functor expressing the squaring function (or the cosine
function). In the case of identity, we can claim congruence for all
functors.

Have we now captured the properties of identity by saying that it is a
congruence for all predicates and all functors? The laws we have stated
suffice to capture all true general principles of entailment involving
identity, and that was our aim. We might still ask whether a relation
could obey these laws without being a relation of sameness in all
respects. The question comes to something like this: are the features of
a thing that are expressible by predicates and functors sufficient to pin
down its identity, to distinguish it from all other things? This is a
puzzling question. While any given collection of predicates and functors
can certainly fail to express differences among things, it is hard to pin
down the claim that there could be such differences that are expressible
by no predicates or functors whatsoever, for any attempt to say what
such differences might be would begin to undercut the claim that they
are inexpressible. In any case, asserting the laws above for all predicates
and functors suffices to establish all general principles of entailment
concerning identity that we can express using our analysis of logical
form.

In saying that identity is a congruence for predicates and functors, we
say that predicates and functors are extensional operations and, in
particular, that they form referentially transparent compounds. For
example, if we were to count the sentence-with-a-gap For the past two
centuries, ___ has been over 35 as a predicate, we could not say that
identity is a congruence for all predicates because to assert congruence
for this incomplete expression would be to assert the validity of the
argument

For the past two centuries, the U. S. president has been over 35 

The U. S. president = George Bush

For the past two centuries, George Bush has been over 35

and, as was noted in 6.1.3 , this is naturally understood to have true
premises and a false conclusion.

This raises a wider philosophical and logical issue. Could we at least
say that this sentence-with-a-blank has an extension that is a function?
Such a function would have to yield truth values as output based on
something beyond the reference values of the terms to which it was
applied, and we might speak of it as an intensional property (as
distinct from as a property in intension, which is merely the way the
extensional property expressed by an ordinary predicate varies from
world to world). So one part of the question we have just asked is



world to world). So one part of the question we have just asked is
whether there are intensional properties.

The other part is whether there is anything for an intensional property
to be a property of. It cannot be a property of an object thought of as a
reference value because it depends on distinctions that are ignored in
saying what reference value a term has. One way of putting this side of
the issue is to ask whether there is any sense of thing in which the terms
the U. S. president and George Bush could be said to signify different
things. Perhaps we could say that one signifies a public official and the
other signifies a person and say that one and the same public official
could be identical with different people at different times. The oddity of
this talk suggests that nasty problems might lurk here, so we will not
open this door any wider. Suffice it to say that logicians and
philosophers have adopted a full range of positions on this issue. Some
happily accept intensional entities (such as public officials as distinct
from the people who hold those offices) while others reject all talk of
intensions, not only of intensional entities and intensional properties
but even of the intensions of ordinary extensional predicates.
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6.3.2. A law for aliases

If we include identity itself among the predicates and functors for which
identity obeys laws of congruence, it will follow that identity is an
equivalence relation provided that it is reflexive. For any reflexive
relation that is a congruence for itself will be symmetric and transitive
also. Moreover, it is enough to say that identity is a reflexive relation
and a congruence for all one-place predicates, simple and complex (i.e.,
including abstracts), to show that identity is a congruence for all
predicates and functors whatsoever. This provides one compact way of
capturing the laws for identity; but, when implementing these laws in
derivation rules, it will be most convenient to group them together in a
different way. We will have two principles, one of which will be the law
asserting that identity is a congruence for all simple predicates. The
other will be a law that groups reflexivity, symmetry, and transitivity
together with the law of congruence for functors.

We arrived at the laws of symmetry and transitivity by understanding
an equation τ = υ to say that the two terms τ and υ are co-aliases, and
we might have arrived at the law of reflexivity in the same way since in
the usage of alias we have adopted here each term is a co-alias of itself.
We can extend these same ideas more generally by speaking of terms τ
and υ as being co-aliases given a set Δ of equations or as being
made co-aliases by Δ. Our intention is that this relation capture the
conditions under which equations are entailed by other equations.

Clearly a set Δ of equations will imply that an equation τ = υ is true if
either an equation between τ and υ (in either order) appears in Δ or one
term can be reached from the other via a series of terms, each of which
is linked to the next (in either order) by an equation in Δ. For example,
if the equations shown in Figure 6.3.2-1 are in a set Δ, the terms a and e
are co-aliases given Δ, as are any other pair of terms appearing in the
list. Moreover, we may count each term as an alias for itself given any
set of equations.

Fig. 6.3.2-1. A chain of equations making terms a and e co-aliases.

Although we have not yet stipulated all the conditions under which we
will count terms as co-aliases, we have said enough to summarize the
laws of reflexivity, symmetry, and transitivity—and more besides—by
stating the following general principle:



stating the following general principle:

LAW FOR ALIASES: Γ ⇒ τ = υ if τ and υ are co-aliases given the set of
equations in Γ (for any set Γ and terms τ and υ).

Like the law for a premise as a conclusion and a number of other
principles we have used, the law for aliases gives sufficient but not
necessary conditions for an entailment to hold, so it is stated with if
rather than if and only if. To see why an equation can be a valid
conclusion without its component terms being made co-aliases by the
premises, note that, while an equation will be entailed by a set of
equations only if it equates terms made co-aliases by that set, an
equation can be entailed by a set of sentences without being entailed by
the equations in the set. (For example, t = u is entailed by the premises
A → t = u and A, and that set contains no equations at all, only a
conditional and an unanalyzed sentence.)

Linking a pair of terms by a chain of equations is not the only way a
set might imply that they have the same extension. Recall the law of
congruence for an n-place functor f

τ  = υ , …, τ  = υ  ⇒ fτ …τ  = fυ …υ
This tells us that the terms fτ …τ  and fυ …υ  must have the same
extension whenever their corresponding components (i.e., τ  and υ , τ
and υ , and so on) do. To incorporate this principle into the law for
aliases, we will want to say that two applications of a given functor are
made co-aliases whenever their corresponding components are made
co-aliases, and we will want to allow this sort of connection between
terms to figure as a link in a chain by which further terms are made co-
aliases.

Putting all this together, we can give a fuller definition of the idea of
co-aliases in the following way.

The co-aliases given a set Δ of equations include pairs of terms of
all of the following kinds:

(i) a term paired with itself;
(ii) a pair of terms equated (in either order) by a member of Δ;

(iii) a pair of terms connected by a chain of terms linked as co-aliases
given Δ;

(iv) a pair of applications of the same functor whose corresponding
components are co-aliases given Δ.

Notice that the third and fourth classes are described in terms of the
relation we are defining. A definition like this can be thought as a series
of instructions for building the extension of the relation it defines. We
first put in all the pairs covered by instructions (i) and (ii). Then we
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first put in all the pairs covered by instructions (i) and (ii). Then we
gradually add more pairs as we are directed to by instructions (iii) and
(iv), replacing the phrase “co-aliases given Δ” by “pairs already in the
extension.” A pair of terms then count as co-aliases given Δ if and only if
they are added at some stage in this process. And, since this process of
building an extension for a two-place predicate can be described without
using the term co-alias, we really have explained the meaning of that
term.

In the simple examples we will usually consider, it will be easy to see
which terms are co-aliases given a set of equations. But it may help in
understanding the idea to think of the sort of “calculation” we might
perform to apply the definition in a more complex example. When
checking to see whether a pair of terms τ and υ are co-aliases given a set
Δ of equations, let us collect all terms appearing as components in τ, υ,
and Δ. Figure 6.3-2 shows these terms for a case where the set Δ
consists of the equations a = b, fb = c, fb = fc, d = gca, and g(fa)b = e
and we are checking to see whether the terms a and fd are co-aliases.

Fig. 6.3.2-2. A work space for finding co-aliases.

Notice that we include fa because it is a component g(fa)b; however,
there is no need to include fe or other more complex terms that could be
formed from this vocabulary. (The arrangement of the terms is not
significant; the one used here is designed simply to make later steps
easier to depict.)

Now let us accumulate links between co-aliases. We will represent
them as lines between terms. At the initial stage (which we will label 0),
we put in links corresponding to equations in the set Δ. We can follow
instruction (iii) after this and after each succeeding stage by considering
terms to be co-aliases when they are linked either directly or by a chain,
so there is no need to draw additional lines. At each of the stages from 1
on, we will consider all functors appearing among the terms and add
any links we are directed to by instruction (iv); this will usually require
new lines. We may need to do this several times over, but if we add no
new links at any stage we can stop because there will be nothing to add



new links at any stage we can stop because there will be nothing to add
thereafter. And, with a finite number of terms, this must happen at
some point because there are only a finite number of links we might
add.

Figure 6.3.2-3 shows such a process for the example of Figure 6.3.2-2,
using labels on links to record the order in which they are entered. The
new links at each stage are emphasized along with any older links that
lead to the new entry. At stage 1, we check the applications of the
functors f and g to see whether we can add any links by instruction (iv).
Since a and b were already linked at stage 0, we add a link between fa
and fb. We add no other links between the applications of f because d is
not linked to a, b, or c. One pair of corresponding terms from gca and
g(fa)b (viz., a and b) were connected at stage 0 but the other pair were
not, so the link between the two applications of g is entered only at stage
2 after c and fa have also been connected (by the link between fa and fb
we enter at stage 1). Even at stage 2 the group including d is not linked
to either the groups in which a, b, and c appear, so there are no further
links between applications of f and the process is complete. The terms a
and fd we were checking do not prove to be co-aliases at the end, but
many other pairs of terms were shown to be co-aliases.

 
Stage 0

 
Stage 1

 
Stage 2

Fig. 6.3.2-3. Terms classified as co-aliases in a series of stages.

The links connect the terms in groups shown in Figure 6.3.2-4. The
members of any group are co-aliases of one another but not of any other
terms.

Fig. 6.3.2-4. Linked terms grouped in alias sets.

Some terms, like fd in the diagram, may be groups unto themselves;
but, because they are co-aliases of themselves, we can still say that any
pair made from such a group is a pair of co-aliases. If the terms had
been written down more randomly, the links between them might have
crossed and the groups of connected terms would no longer stand out;
but they would still be there, and any diagram can be disentangled so
that they appear. (This is a distinguishing feature of equivalence
relations; any such relation divides a range of values into non-
overlapping equivalence classes.) We will refer to each such group of
connected terms as an alias set.

Now we are ready to justify our law of aliases, which claims that 
Γ ⇒ τ = υ whenever τ and υ are co-aliases given the equations in Γ. We
can do this by showing how this law summarizes earlier ones. Each of
the instructions (i)-(iv) for building connections between terms
implements one or more of laws of entailment:

 instruction law(s)
(i) enter all terms appearing as

components in τ, υ, and the
set Δ of equations appearing
in Γ

law of reflexivity (since entering the
term establishes a link with itself)

(ii) link each pair of terms equated
(in either order) by a member
of Δ

law for a premise as a conclusion and
the law of symmetry (since a link
amounts to an equation in both
directions)

(iii) count as linked any pair of
terms connected by a chain of
links

law of transitivity

(iv) link any pair of applications of
the same functor whose
corresponding components
are linked

law of congruence for functors

We combine laws in (ii) and also through carrying out the instructions
in a series of stages. This combination of laws can be justified by the law
for lemmas because we can think of the process of adding links as a
process of adding further equations as lemmas.



process of adding further equations as lemmas.
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6.3.3. Derivations for identity

We are now in a position to state the derivation rules for identity that
will be part of our basic system. We will have four rules for closing gaps,
two pairs of extensions of the rules QED and Nc. One pair is based on
the law for co-aliases alone and the other also rests on the laws of
congruence for predicates.

The first two rules—Equated Co-aliases (EC) and Distinguished
Co-aliases (DC)—are shown in Figures 6.3.3-1 and 6.3.3-2.

│…
│[τ and υ
│     are co-aliases]
│…
││…
││
│├─
││τ = υ
│…

→

│…
│[τ and υ
│     are co-aliases]
│…
││…
││●
│├─

n EC││τ = υ
│…

Fig. 6.3.3-1. Closing a gap whose goal is an equation between terms that
are co-aliases with respect to the available resources.

│…
│[τ and υ
│     are co-aliases]
│…
│¬ τ = υ
│…
││…
││
│├─
││⊥
│…

→

│…
│[τ and υ
│     are co-aliases]
│…
│¬ τ = υ (n)
│…
││…
││●
│├─

n DC││⊥
│…

Fig. 6.3.3-2. Closing a gap of a reductio argument one of whose resources
negates an equation between terms that are co-aliases with respect to

the available resources.

The bracketed remark concerning τ and υ stipulates that there be
enough equations among the available resources to make the terms τ
and υ co-aliases. The law for aliases then tells us that the resources
entail the equation τ = υ. So, if this equation is our goal, we may count
the gap closed; and, if its denial is among our resources, we have the
inconsistency required to close the gap of a reductio argument. An
important special case of this rule is one where τ and υ are the same
term. In this case, τ = υ is τ = τ (which is also υ = υ) and, since a term
is a co-alias of itself with respect to any set—even with respect to a set
in which it does not appear—any gap with a self-equation as its goal



in which it does not appear—any gap with a self-equation as its goal
may be closed as may the gap of a reductio argument with a negated
self-equation among its resources. Notice that the general form of these
rules differs from the special case for self-equations only by exchanging
terms that are co-aliases.

Some abbreviated terminology will help in stating the next rules for
identity. Let us say that two series of terms τ …τ  and υ …υ  are co-
alias series when they have the same length and their corresponding
members are co-aliases—that is, when τ  and υ  are co-aliases for i from
1 to n where n is the length of the two series. Then the second pair of
rules for identity are shown in Figures 6.3.3-3 and 6.3.3-4. These are
Quod Erat Demonstrandum Given Equations (QED=) and Non-
contradiction Given Equations (Nc=).

│…
│[τ …τ  and υ …υ
│     are co-alias series]
│…
│Pτ …τ
│…
││…
││
│├─
││Pυ …υ
│…

→

│…
│[τ …τ  and υ …υ
│     are co-alias series]
│…
│Pτ …τ (n)
│…
││…
││●
│├─

n QED=││Pυ …υ
│…

Fig. 6.3.3-3. Closing a gap one of whose resources differs from its goal
only by terms that are co-aliases.

│…
│[τ …τ  and υ …υ
│     are co-alias series]
│…
│¬ Pτ …τ
│…
│Pυ …υ
│…
││…
││
│├─
││⊥
│…

→

│…
│[τ …τ  and υ …υ
│     are co-alias series]
│…
│¬ Pτ …τ (n)
│…
│Pυ …υ (n)
│…
││…
││●
│├─

n Nc=││⊥
│…

Fig. 6.3.3-4. Closing a gap of a reductio argument one of whose resources
differs from the negation of another only by terms that are co-aliases.

Here a bracketed remark stipulates that the available resources contain
enough equations to make corresponding component terms of Pτ …τ
and Pυ …υ  co-aliases and thus to entail identities between these terms.
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and Pυ …υ  co-aliases and thus to entail identities between these terms.
The law of congruence for P then tells us that Pυ …υ  is entailed by
available resources. If it is our goal, we may close the gap, and we may
do so also if the gap is in a reductio argument and our resources contain
its denial ¬ Pυ …υ .

The sentences Pτ …τ  and Pυ …υ  that figure in the last two rules
have been described as applications of the same predicate whose
corresponding component terms are co-aliases. A little thought will
show that we can describe such expressions equally well as atomic
sentences that differ only by components that are co-aliases. This makes
the similarity of this rule to QED and Nc a little more apparent. Instead
of saying that we can close a gap when our goal is among our resources
and when one resource negates another (as we do in QED and Nc), we
say here that we can close a gap if a resource differs from the goal or
from the negation of another resource only by co-aliases. This way of
describing these rules leads to the question whether we really need to
limit them to predications. The answer is that we do not although that is
the only case where we really need to use the rule.

Other rules can be extended in the way QED and Nc are extended in
QED= and Nc=: if the illustration of the rule displays two occurrences of
a sentence, these may be sentences that are different but that differ only
by terms that are co-aliases given the available resources. (As was noted
above, even our first two rules for identity could be seen as the result of
extending in this way rules that say that we can close a gap whose goal
is a self-equation and a reductio gap whose resources contain the denial
of a self-equation.) When is extended in this way, the rule label should
be followed by the equals sign, as in the labels for QED= and Nc=. We
will call the result an extension of the rule for equations; and, as
with QED= and Nc=, the equals sign added to the name may be read
“given equations.”

Below are two derivations that illustrate these ideas. The first uses the
rule of Figure 6.3.3-3 to close the gap after stage 2. The second uses an
extended version of modus ponens; the resource Rc(fa) and the
antecedent of Rcc → Gc differ only by terms (fa and c) that are co-
aliases given the equations fa = b and b = c. When an equation is added
to the resources, the resulting alias sets are indicated to the right of the
equation by listing the members of each with dashes between,
separating the members of different alias sets by commas.

1 n

1 n

1 n

1 n

1 n 1 n



│Fb ∧ a = b 1
├─

1 Ext │Fb (3)
1 Ext │a = b a—b, d

│
││a = d a—b—d
│├─
││●
│├─

3 QED=││Fd 2
├─

2 CP │a = d → Fd

│Rc(fa) ∧ fa = b 1
│Rcc → Qc 3
├─

1 Ext │Rc(fa) (3)
1 Ext │fa = b a, fa—b, c

│
││b = c a, fa—b—c
│├─

3 MPP=││Qc (4)
││●
│├─

4 QED ││Qc 2
├─

2 CP │b = c → Qc

If the extended form of modus ponens were not used in the second
derivation, we would need to set up an indirect proof to reach the goal
Qc and exploit Rcc → Qc using the rule for exploiting conditionals in
reductio arguments. Both gaps of the derivation would then close using
the identity rules for closing gaps.

The point of listing alias sets to the right of equations is to sum up the
co-aliases at at each stage when they change. When several equations
are added at the same stage (or appear among the initial premises), only
the last need be notated in this way. There is no need record the alias
sets until the first stage when an equation appears as a resource since
up to that point each term is in an alias set by itself. Although it is
usually by adding equations that the alias sets will change, this is not
the only possible way. When a term is added, either in a new resource
or in a new goal, it must be accommodated in the co-alias sets. Although
new terms will be introduced regularly in later chapters, they could be
introduced now only if attachment rules or the rule LFR were used to
introduce sentences that are not already components of sentences in the
derivation. Since that is not a use of such rules that we have been
considering, we will not consider examples, but a general guideline for
listing alias sets can be stated that will include such cases: at the initial
stage of a derivation if it equations as resources and at any stage
thereafter at which the alias sets of a gap have changed, list the alias
sets at the right near the top of the gap. When several resources are
added, the alias sets can be added after the last new resource that
figures in the change. If no new resources are added (and the alias sets
change only because of vocabulary added in a new goal), the alias sets
may be listed at the right of the top of the scope line of the gap.

It is sometimes useful to be able to enter an equation between co-
aliases as a further resource. Since this does not change the alias sets, it
does bring a gap near an end and it is not automatically progressive.

does bring a gap near an end and it is not automatically progressive.
Therefore, we will count it as an attachment rule. We will label this rule
by reversing the name of one of the rules for closing gaps: it will be
called Co-alias equation (CE):

│…
│[τ and υ
│     are co-aliases]
│…
││…
││
││
│├─
││φ
│…

→

│…
│[τ and υ
│     are co-aliases]
│…
││…

n CE││τ = υ X
││
│├─
││φ
│…

Fig. 6.3.3-5. At stage n, adding an equation between terms that are co-
aliases with respect to the available resources.

Equations are never exploited, so the X at the right does not mark the
added equation as already exploited; instead it indicates that the
equation leads to no change in the alias sets since its component terms
are already co-aliases. Since any use of such an equation to close a gap
is already covered by other rules, this rule will serve primarily to
provide auxiliary resources for detachment rules (and available
resources for use in other attachment rules). Here is a simple example.

│a = b
│b = c a—b—c, fa—fc, d
│(fa = fc ∧ d = d) → Ga 4
├─

1 CE │fa = fc X,(3)
2 CE │d = d X,(3)
3 Adj │fa = fc ∧ d = d X,(4)
4 MPP│Ga (5)

│●
├─

5 QED│Ga

If we were to use only basic rules, we would need to resort to a reductio
argument and the rule RC.

The rule CE is really only needed when no co-alias of the terms being
equated appears as a term of an equation. The rule would not have been
necessary in the example above if the conditional’s antecedent had been
something like a = c ∧ b = b because this sentence could be added by the
extended attachment rule Adj= since it differs from a conjunction of the
first two premises only by co-aliases. In general, if our resources contain
any equation between co-aliases of the terms that we want to join in the
new equation, we have an equation differing from the one we want only



new equation, we have an equation differing from the one we want only
by co-aliases and we can use the extended form of whatever rule we
might apply to the new equation.

Finally, we will add an attachment rule that allows a resource to be
added when it differs from an available resource only by co-aliases. Such
resources can be represented as θτ …τ  and θυ …υ  where τ …τ  and 
υ …υ  are co-alias series. That is, it is understood that the differences
between the resources are limited to the displayed series of terms so the
resources amount to predications to the two series τ …τ  and υ …υ  of
an abstract θ that takes the form [… x  … x  …] , where x …x  is a

series of distinct variables with the same length as τ …τ  and υ …υ .
The name of the rule is Congruence (Cng).

│…
│[τ …τ  and υ …υ
│     are co-alias series]
│…
│θτ …τ
│…
││…
││
││
│├─
││φ
│…

→

│…
│[τ …τ  and υ …υ
│     are co-alias series]
│…
│θτ …τ (n)
│…
││…

n Cng││θυ …υ X
││
│├─
││φ
│…

Fig. 6.3.3-6. At stage n, that differs from an available resource only by
the occurrence of terms that are co-aliases.

The resource that is added by this rule is marked as exploited because
any exploitation of the earlier resource will be enough to take account of
it. The rule Cng offers the following alternative to an earlier derivation.

│Rc(fa) ∧ fa = b 1
│Rcc → Qc 4
├─

1 Ext │Rc(fa) (3)
1 Ext │fa = b a, fa—b, c

│
││b = c a, fa—b—c
│├─

3 Cng ││Rcc X,(4)
4 MPP││Qc (5)

││●
│├─

5 QED││Qc 2
├─

2 CP │b = c → Qc

1 n 1 n 1 n

1 n

1 n 1 n

1 n x …x1 n 1 n

1 n 1 n

1 n 1 n

1 n

1 n 1 n

1 n

1 n

Notice that the ordinary form of MPP is used here rather than the
extended form MPP= used earlier, and Cng can always be avoided by
using the extended forms of other rules. The point of using Cng is only
that it may make it easier to follow an argument.

Glen Helman  17 Aug 2006
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6.3.s. Summary

The logical properties of identity have two sources, the extension
stipulated for = and the requirement that all predicates and functors
be extensional. We will approach these properties by speaking of the
terms equated by a true equation as co-aliases . Some thought about
this idea shows us that identity obeys laws of reflexivity , symmetry ,
and transitivity . There are other relations obey laws of the same
form; any relation that obeys laws of all three sorts is an equivalence
relation  and can be thought to ascribe sameness in certain respects.
Identity is distinguished as holding in the fewest cases of any
equivalence relation; it implies sameness in respect to all predicates
and functors. That is, identity is a congruence for each predicate
and functor . All of the laws for identity can be summarized by saying
that identity is reflexive and is a congruence for all one-place
predicates, abstracts included. To say that identity is a congruence for
a predicate or functor is to say that it is an extensional operation. A
predicate that did not satisfy this requirement would be an
intensional property  (as distinct from a property in intension , which
is the meaning of an ordinary extensional predicate) and the things of
which it was true or false would be intensional entities . Whether
these ideas are needed to account for aspects of deductive reasoning
(or are even coherent) has been a matter of controversy, but we will
consider only extensional operations.

A different way of organizing the laws for identity is useful in stating
derivation rules. We say that terms are co-aliases given  a set Δ of
equations if an equation between the terms follows from Δ. A set Δ of
equations serves to divide a collection of terms into alias sets , groups
of terms whose members are mutual co-aliases; these are examples of
the equivalence classes  associated with any equivalence relation. The
alias sets determined by a given set of equations can be found by a
process of making links between terms , following rules that
implement the laws for identity. As a result, identity obeys a law for
aliases  that says that an equation τ = υ is entailed by a set of premises
if the terms τ and υ are co-aliases given the equations among those
premises.

The law for aliases and the law of congruence for predicates provide
us with the basic derivation rules for =, each of which is a rule for
closing gaps. The rules employ the idea of terms being co-aliases given
the equations among the resources of a gap. One, Equated Co-aliases
(EC) , says a gap may be closed if its goal is an equation between co-

aliases, and another, Distinguished Co-aliases , says a reductio gap
may be closed if its resources include a denial of such an equation. A
second pair concern predications of the same predicate to series of
terms whose corresponding members are co-aliases. One of these,
QED Given Equations (QED=)  says that a gap may be closed if its
goal is a predication that differs from another predication among the
resources only by co-aliases and another, Nc Given Equations (Nc=)
says that a reductio gap may be closed if one of its resources differs
from what another denies only by co-aliases. The statements of these
rules use the idea of co-alias series  of terms, two series of the same
length whose corresponding terms are co-aliases. The idea behind this
second pair of rules can be carried further and we may extend  any
rule by counting as identical, for the purposes of applying the rule,
any sentences that differ only by terms that are co-aliases. There are
two attachment rules for identity that may be convenient. One, Co-
alias Equation (CE) , allows us to add to the resources any equation
between co-aliases and the other, Congruence (Cng) , allows us to add
a predication that differs only by co-aliases from one already among
the available resources.

Glen Helman  15 Aug 2006



6.3.x. Exercise questions

Use the system of derivations to establish each of the following:

1. Fa → Ga, Fa, a = b ⇒ Gb

2. Fa → Ga, Fb, a = b ⇒ Ga

3. Fa ∧ a = gb ⇒ ¬ F(gc) → ¬ b = c

4. Fa → G(fa), G(fb) → Hb, a = b ⇒ Fb → Ha

5. fa = b, fc = d ⇒ (a = c ∨ b = d) → fa = d

6. The vice president is Dick Cheney
George Bush is the president
The vice president is not from Texas

If George Bush is from Texas, then Dick Cheney is not the
president

Glen Helman  17 Aug 2006

6.3.xa. Exercise answers

Some of the derivations below are given twice, once using only the basic
identity rules EC, DC, QED=, and Nc= and a second time using MPP=
and similar extensions for equations of other rules (see 6.3.3 ); either
approach is entirely acceptable.
1. │Fa → Ga 1

│Fa (1)
│a = b a—b
├─

1 MPP │Ga (2)
│●
├─

2 QED=│Gb

2. │Fa → Ga 2
│Fb (3)
│a = b a—b
├─
││¬ Ga (2)
│├─

2 MTT││¬ Fa (3)
││●
│├─

3 Nc= ││⊥ 1
├─

1 IP │Ga

 │Fa → Ga 1
│Fb (1)
│a = b a—b
├─

1 MPP=│Ga (2)
│●
├─

2 QED │Ga

3. │Fa ∧ a = gb 1
├─

1 Ext │Fa (4)
1 Ext │a = gb a—gb, b, c, gc

│
││¬ F(gc) (4)
│├─
│││b = c a—gb—gc, b—c
││├─
│││●
││├─

4 Nc=│││⊥ 3
│├─

3 RAA││¬ b = c 2
├─

2 CP │¬ F(gc) → ¬ b = c



4. │Fa → G(fa) 3
│G(fb) → Hb 5
│a = b a—b, fa—fb
├─
││Fb (4)
│├─
│││¬ Ha (7)
││├─
││││●
│││├─

4 QED=││││Fa 3
│││
││││G(fa) 6
│││├─
│││││●
││││├─

6 QED=│││││G(fb) 5
││││
│││││Hb (7)
││││├─
│││││●
││││├─

7 Nc= │││││⊥ 5
│││├─

5 RC ││││⊥ 3
││├─

3 RC │││⊥ 2
│├─

2 IP ││Ha 1
├─

1 CP │Fb → Ha

 │Fa → G(fa) 2
│G(fb) → Hb 3
│a = b a—b, fa—fb
├─
││Fb (2)
│├─

2 MPP=││G(fa) (3)
3 MPP=││Hb (4)

││●
│├─

4 QED=││Ha 1
├─

1 CP │Fb → Ha

5. │fa = b
│fc = d a, b—fa, c, d—fc
├─
││a = c ∨ b = d 2
│├─
│││a = c a—c, b—fa—fc—d
││├─
│││●
││├─

3 EC│││fa = d 2
││
│││b = d a, fa—b—d—fc, c
││├─
│││●
││├─

4 EC│││fa = d 2
│├─

2 CP││fa = d 1
├─

1 CP │(a = c ∨ b = d) → fa = d

6. │v = c
│b = p b—p, c—v
│¬ Fvt (3)
├─
││Fbt (3)
│├─
│││c = p b—p—c—v
││├─
│││●
││├─

3 Nc=│││⊥ 2
│├─

2 RAA││¬ c = p 1
├─

1 CP │Fbt → ¬ c = p

F: [ _ is from _ ]; v: the vice president; b: George Bush; c: Dick
Cheney; p: the president; t: Texas
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