
4.2. Arguing from and for alternatives

4.2.0. Overview

Because a disjunction normally says less than its components while a
conjunction says more, the two connectives play very different roles in
entailment.

4.2.1. Proofs by cases  
Since a disjunction says only what is said by both its disjuncts, it
entails only what is entailed by both of them.

4.2.2. Proving disjunctions  
Since a disjunction makes a relatively weak claim, it is easy to state a
sound rule to plan for it, but a safe rule that will cover all cases where
it holds is more complex.

4.2.3. Further examples  
There are now many choices to be regarding the order in which rules
are applied and some differences in the length of derivations can
result.

4.2.4. The duality of conjunction and disjunction  
Conjunction and disjunction are, in a certain formal sense, mirror
images of one another.
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4.2.1. Proofs by cases

The validity of the argument

Sam didn’t praise the proposal without granting its significance 
Sam didn’t condemn the proposal without granting its significance

Sam either praised or condemned the proposal
Sam granted the proposal’s significance.

can be accounted for by the validity of the following two arguments:

Sam didn’t praise the proposal without
granting its significance

Sam didn’t condemn the proposal
without granting its significance

Sam praised the proposal
Sam granted the proposal’s significance

 

Sam didn’t praise the proposal without
granting its significance

Sam didn’t condemn the proposal
without granting its significance

Sam condemned the proposal
Sam granted the proposal’s significance

Each replaces the disjunctive third premise of the original argument by
one of its two components. This way of establishing an entailment is
sometimes called a proof by cases. In this example, the two cases are
Sam having praised the proposal and Sam having condemned it. Since
the disjunction says all and only what is common to these two claims,
what follows from the disjunction in isolation or in addition to other
premises is what follows from each of these claims under similar
circumstances.

More formally, the idea behind proofs by cases is captured by this
principle:

LAW FOR DISJUNCTION AS A PREMISE. Γ, φ ∨ ψ ⇒ χ if and only if both Γ, 
φ ⇒ χ and Γ, ψ ⇒ χ (for any set Γ and sentences φ, ψ, and χ).

To see why this law is true note that to divide the members of Γ and 
φ ∨ ψ on the one hand from χ on the other, a possible world must make
φ ∨ ψ and all members of Γ true while making χ false. To do this it must
make at least one of φ and ψ true, so it must divide at least one of the
arguments Γ, φ / χ and Γ, ψ / χ. So, to say that the original argument is
valid is to say that neither of these latter arguments can have its
premises and alternatives divided—that is, that both are valid.

This idea appears in derivations by way of a rule we will call Proof
by Cases (PC); it is shown in Figure 4.2.1-1.
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Fig. 4.2.1-1. Developing a derivation by exploiting a disjunction at
stage n.

PC divides a gap into two new gaps. Each is a case argument that
retains the original goal but adds one of the components of the
disjunction as a supposition. The function of each supposition is to
specify one of the two sorts of case in which the original disjunction is
true. A supposition is required because, although our premises tell us
that at least one of the disjuncts is true, we do not know which that is
and the one that is true will vary among the possible worlds in which
the premises are all true.

Here is a derivation which uses this rule to provide a proof for
example with which we began.

│¬ (P ∧ ¬ G) (4)
│¬ (C ∧ ¬ G) (7)
│P ∨ C 1
├─
││P (3)
│├─
│││¬ G (3)
││├─

3 Adj│││P ∧ ¬ G X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 IP ││G 1
│
││C (6)
│├─
│││¬ G (6)
││├─

6 Adj│││C ∧ ¬ G X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 IP ││G 1
├─

1 PC │G

C: Sam condemned the proposal; G: Sam granted the proposal’s
significance; P: Sam praised the proposal

In the two case arguments, we suppose first that Sam praised the
proposal and then that he condemned it and, in each case, we show that
he granted the proposal’s significance (by showing that he could not
have failed to grant it). Since at least one of these two cases must be true
whenever the premises are all true, we know that the conclusion must
be true also.
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4.2.2. Proving disjunctions

Now let us look at disjunctions as conclusions. An entailment Γ ⇒ φ ∨ ψ
will hold if and only if φ ∨ ψ is true in every possible world in which all
members of Γ are true. But this is to say that at least one of φ and ψ is
true in every such world, and that is a way of saying that Γ renders φ
and ψ jointly exhaustive. So we can state the following principle:

Γ ⇒ φ ∨ ψ if and only if Γ ⇒ φ, ψ
Since the right-hand side has two alternatives, this is not a law

concerning entailment alone, and we will not take the principle in this
form as our account of the role of disjunctions as conclusions. However,
we can use the basic law for relative exhaustiveness to restate the right-
hand side as claim of entailment.

Indeed we have two ways of doing that. If φ and φ are contradictory,
we can say

Γ ⇒ φ ∨ ψ if and only if Γ, φ ⇒ ψ
and if ψ and ψ are contradictory, we can say

Γ ⇒ φ ∨ ψ if and only if Γ, ψ ⇒ φ
In short, a disjunction is a valid conclusion from premises Γ if and only
if adding to our premises a sentence contradictory to one disjunct
enables us to validly conclude the other disjunct.

In stating a principle for disjunction we will limit ourselves to cases
where a sentence and its negation are the pair of contradictory
sentences. But, when the disjuncts are already negative, that leaves us
with two choices for each of the pairs φ and φ and ψ and ψ since each of
φ and ψ might be the result of either adding or dropping a negation. To
avoid stating four principles to cover each of these possibilities, we will
introduce some notation to capture the general idea of obtaining a
contradictory sentence by either adding or dropping a negation. Let the
notation ¬  φ be the result of negating φ with an optional added step of
deleting a double negation if φ was already negative. Then ¬  φ will
stand for ¬ φ when φ is not a negation and, when φ is the negation ¬ χ,
for either ¬ ¬ χ or χ. That is, ¬  φ is the result of either negating or,
perhaps, de-negating φ, and ¬  φ will either be the negation of φ or
have φ as its negation.

Then ¬  φ and φ form a contradictory pair consisting of a sentence
and its negation in one order or the other, so we may formulate a
principle to account for conclusions that are disjunctions with only two
statements:

±

±

±

±

±

LAW FOR DISJUNCTION AS A CONCLUSION. (i) Γ ⇒ φ ∨ ψ if and only if 
Γ, ¬  φ ⇒ ψ, and (ii) Γ ⇒ φ ∨ ψ if and only if Γ, ¬  ψ ⇒ φ (for any
set Γ and sentences φ, ψ, and χ).

When these are implemented as derivation rules, they give us two ways
of planning for a disjunctive goal.

The two rules are shown as alternative developments in Figure 4.2.2-
1. We will refer to both forms of the rule as Proof of Exhaustion (PE)
since it is a way of showing that φ and ψ, taken together, exhaust all
possibilities left open by the premises.

│…
││…
││
││
││
││
││
│├─
││φ ∨ ψ
│…

→

│…
││…
│││¬  φ
││├─
│││
││├─
│││ψ n
│├─

n PE││φ ∨ ψ
│…

OR

│…
││…
│││¬  ψ
││├─
│││
││├─
│││φ n
│├─

n PE││φ ∨ ψ
│…

Fig. 4.2.2-1. Alternative ways of developing a derivation by planning for
a disjunction at stage n.

In each way of developing a gap, we set one of the components of the
disjunction as a new goal and add the negation or de-negation of the
other component as a supposition. In each way of developing a gap, we
set one of the components of the disjunction as a new goal.

Both forms of planning will lead to the same answer in the end, but
one or the other may be more efficient in a particular case. There is no
simple way of predicting which choice is best but the following rules of
thumb may help:

(i) if only one component is a negation, choose it to form the
supposition (by dropping its negation);

(ii) if only one component is a non-negative compound choose it as
the goal;

(iii) if only one component seems likely to figure in closing the gap
and it is not a negation, choose it as the goal.

In many cases none of these suggestions will apply; but, in most such
cases, neither one of the two forms of the rule is better than the other.

The supposition in PE may be described as hypothetical, and this
indicates a third role that suppositions may play. In reductio arguments
and indirect proofs, we make suppositions with the aim of showing that
they are false. In a proof by cases we make a pair of suppositions at least
one of which we take to be true. In PE on the other hand, a supposition

± ±

± ±



one of which we take to be true. In PE on the other hand, a supposition
is made with no expectation of either truth or falsity. It is made instead
simply to establish a connection between it and another claim. As we
argue within the scope of the supposition, we are making a
hypothetical argument, one that explores the implications of the
supposition in order to establish a connection between it and another
claim. The conclusion we draw to end the scope of the supposition states
this connection between the two claims. Here, it is φ ∨ ψ, so the
connection between the two sentences is at least one of them is true.
This is a statement made categorically; this, it no longer falls under the
supposition.

There is some danger of getting tangled in the terminology here, so
let’s pause and look at it more closely. The terms hypothetical and
categorical derive from an ancient classification of sentences into the
“categorical,” the “disjunctive,” and the “hypothetical”. Since
disjunctions and “hypothetical sentences” (the conditionals to be
studied in the next chapter) are ways of hedging claims, the term
categorical has acquired the meaning ‘unhedged’. Now the disjunctive
goal to which we applied this term above certainly hedges each of its
components, so it does not state them categorically. But, while
sentences along the scope line of the hypothetical argument are stated
only “under the hypothesis” that is the supposition of this argument, the
disjunction following the argument is no longer hedged in this way,
which means that it is stated categorically with respect to that
supposition (though it may still fall in the scope of earlier ones). In
short, when the scope line of a hypothetical argument ends, a hedged
statement (of a possibly unhedged sentence) is converted into an
unhedged statement of a sentence that incorporates a hedge.

As an example of this rule, consider the argument below,
understanding X was out to be the denial of X was home. The validity of
this argument can be established by the English derivation whose first
stage is shown at the right.

 Ann and Bill were not both home
without the car being in the
driveway

The car was not in the driveway

Either Ann or Bill was out

 │¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
││
│├─
││¬ B 1
├─

1 PE│¬ A ∨ ¬ B

The overall form is that of a hypothetical argument in which we suppose
that Ann was at home (a supposition that is one of the two possibilities
for ¬  ¬ A) and establish under this hypothesis that Bill was out. This
shows the connection between Ann being out and Bill being out that we
claim when we state categorically that at least one was out. When the
hypothetical argument ends, we move from a statement of ¬ B under
the hypothesis A to a statement of ¬ A ∨ ¬ B that is hedged by the
added alternative ¬ A but that is no longer stated under the hypothesis
A.

Notice that if we continue the derivation

│¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
│││B
││├─
│││
││├─
│││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

we plan for the goal ¬ B by supposing B for reductio. And this example
illustrates the different functions of the two sorts of supposition. We
suppose that Ann is home in order to show that ¬ B (i.e., Bill is out) is
true in all possible worlds in which ¬ A (i.e., Ann is out) is false. We go
on to show that ¬ B is true in these cases by showing that to suppose
further that B would rule out all possibilities—i.e., that this supposition
would be absurd when added to our premises and the supposition A.
From one point of view, both suppositions are merely added
assumptions. But we add the first in order to show that, by adding the
second, we would go too far.
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4.2.3. Further examples

Both disjunction rules are
illustrated by the derivation at
the right, in which one grouping
of a three-part disjunction is
shown to entail the other.
Choices between the two ways of
planning for a goal disjunction
were made at stages 2, 3, 5, 6,
and 7 in accordance with the
rules of thumb given above. Each
choice helped to shorten the
derivation—though only by a few
steps. The derivation is contrived
to provide several examples of
this rule; we might have instead
planned for initial the goal at
stage 1 before exploiting the
premise rather than planning for
it separately in each of three
gaps.

 │A ∨ (B ∨ C) 1
├─
││A (4)
│├─
│││¬ C
││├─
││││¬ B
│││├─
││││●
│││├─

4 QED ││││A 3
││├─

3 PE │││A ∨ B 2
│├─

2 PE ││(A ∨ B) ∨ C 1
│
││B ∨ C 5
│├─
│││B (8)
││├─
││││¬ C
│││├─
│││││¬ A
││││├─
│││││●
││││├─

8 QED │││││B 7
│││├─

7 PE ││││A ∨ B 6
││├─

6 PE │││(A ∨ B) ∨ C 5
││
│││C (10)
││├─
││││¬ (A ∨ B)
│││├─
││││●
│││├─

10 QED││││C 9
││├─

9 PE │││(A ∨ B) ∨ C 5
│├─

5 PC ││(A ∨ B) ∨ C 1
├─

1 PC │(A ∨ B) ∨ C

The scale of the difference you can expect a choice between the two
forms of PE to make is illustrated by the two derivations below.

│B (3)
├─
││¬ A
│├─
│││¬ C
││├─
│││●
││├─

3 QED│││B 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

 │B (5)
├─
││¬ (B ∨ C) 3
│├─
│││¬ A
││├─
│││││¬ C
││││├─
│││││●
││││├─

5 QED│││││B 4
│││├─

4 PE ││││B ∨ C 3
││├─

3 CR │││⊥ 2
│├─

2 IP ││A 1
├─

1 PE │A ∨ (B ∨ C)

Each chooses a different way of planning for the initial goal at stage 1.
Notice that in the second, which makes the less efficient choice, we are
led back to the goal B ∨ C in a couple of stages.
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4.2.4. The duality of conjunction and disjunction

While a conjunction and a disjunction formed from the same
components are certainly not contradictories, the two connective are
opposites in another sense, the one for which we have used the term
dual.

This duality can be expressed in one way by saying that when
conjunction and disjunction are applied to pairs of sentences whose
corresponding components are contradictory, the results are
contradictory. For example, let us again take X was home and X was out
to be contradictories. Then note that to get a sentence contradictory to
Ann and Bill were home, we cannot take Ann and Bill were out since
both would be false if one of Ann and Bill was home and the other out.
To get a contradictory to we need to cover both of those possibilities as
well, and Ann or Bill was out will do this. That is, Ann and Bill were
home is contradictory to Ann or Bill was out and, similarly, Ann or Bill
was home is contradictory to Ann and Bill were out. And this is to say
that ¬ Ann and Bill were home ⇔ Ann or Bill was out and that ¬ Ann
or Bill was home ⇔ Ann and Bill were out.

In cases of contradictoriness captured by the ¬  notation, these
patterns of equivalence are know as De Morgan’s laws:

¬ (φ ∧ ψ) ⇔ ¬  φ ∨ ¬  ψ 
¬ (φ ∨ ψ) ⇔ ¬  φ ∧ ¬  ψ

Although these are named after Augustus De Morgan (1806-1871), they
were known well before his time.

Another way to see the duality of conjunction and disjunction is to
look at the principles of relative exhaustiveness. The table below follows
the pattern of the one given for ⊥ and ⊤ in 1.4.8 .

as a premise as an alternative

Conjunction Γ, φ ∧ ψ ⇒ Δ iff Γ, φ, ψ ⇒ Δ Γ ⇒ φ ∧ ψ, Δ iff
both Γ ⇒ φ, Δ and Γ ⇒ ψ, Δ

Disjunction Γ, φ ∨ ψ ⇒ Δ iff 
both Γ, φ ⇒ Δ and Γ, ψ ⇒ Δ

Γ ⇒ φ ∨ ψ, Δ iff Γ ⇒ φ, ψ, Δ

(Here iff is used as an abbreviation of if and only if.) Notice that the
analogy between the upper left and lower right and between the lower
left and upper right. That is, conjunction behaves as a premise much as
disjunction behaves as an alternative and disjunction behaves as premise
much as conjunction behaves as an alternative.

Since ⊥ and ⊤ are paired as duals and so are conjunction and
disjunction, you might wonder about negation. In fact, it is dual to itself.
If we negate each of a pair of contradictory sentences, the results are

±

± ±

± ±

If we negate each of a pair of contradictory sentences, the results are
contradictory; that is, we do not need to apply different operations to
the two contradictory sentences in order for the results to be
contradictory. And negations behavior as a premise is analogous to its
behavior as an alternative.

Γ, ¬ φ ⇒ Δ iff Γ ⇒ φ, Δ 
Γ, φ ⇒ Δ iff Γ ⇒ ¬ φ, Δ

Having a negated premise or alternative is equivalent to having the
unnegated sentence in the opposite role.

The term duality points to a certain sort of two-for-one principle. It is
used when there is some way of associating vocabulary items as pairs so
that replacing one member of a pair by the other throughout any truth
will yield another truth. In our case, we have the associations

premise alternative
⊥ ⊤

negation negation
conjunction disjunction

So, for example (and to deal only with informal statements of the
principles), the principle A conjunction as a premise may be replaced
by its components as separate premises (the upper left in the table
above) turns into A disjunction as an alternative may be replaced by
its components as separate alternatives (the lower right). And the
principle A negation as a premise may be replaced by its immediate
component as an alternative (the first of the principles for negation
above) turns into A negation as an alternative may be replaced by its
immediate component as a premise (the second of the principles). We
will see more examples of such transformations in the next section but
we have already seen some further ones: each of the two forms of De
Morgan’s laws may be transformed into the other by this association.

Since these transformations treat premises and alternatives in a
parallel way, not all will apply to entailment, which allows multiple
premises but only a single alternative. However, we have also seen that
principles for relative exhaustiveness may be transformed still further
into principles of entailment by the basic law for relative exhaustiveness
(of which the two principles for negation above are special cases) since
that law enables us to replace alternatives by premises that are their
contradictories.
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1

2

3

4

4.2.s. Summary

A disjunction φ ∨ ψ is false only when its disjuncts are both false, and
it thus says only what both of them say. The law for disjunction as a
premise  tell us that we can establish a conclusion using such a
premise by showing that it is entailed by each of the disjuncts (given
our other premises). This way of exploiting a disjunction is known as
an proof by cases  and it appears in our system of derivations as the
rule Proof by Cases (PC)  that leads us to divide a gap into two case
arguments , each of which takes over the original goal and adds one of
the two disjuncts as a supposition.

To show that a disjunction is a valid conclusion, we must show that
its disjuncts are rendered jointly exhaustive by the premises. We can
do this by showing that one of the disjuncts will follow if we add the
contradictory of the other to our premises. We use the notation ¬  φ
to indicate the result of either negating or de-negating  φ. The law for
disjunction as a conclusion then tells us that we can conclude a
disjunction if we can conclude one disjunct provided we take the
negation or de-negation of the other disjunct as a premise. The rule
implementing this idea is Proof of Exhaustion ; it enables us to
conclude a disjunction from an argument that may be called
hypothetical  since it bases disjunct on an assumption (of the negation
or de-negation of the other disjunct) that we may not be prepared to
assert categorically . It does not matter for the soundness or safety of
PE which disjunct figures as the goal of this hypothetical argument
and which is negated or de-negated in its supposition.

Derivations, especially those that have a disjuction as a goal as well as
a premise can often be developed in different ways. Some of these can
be significantly longer than others but the choice  between forms of
PE will usually have only a limited impact on the length.

Conjunction and disjunction are opposite in the sense of being dual .
One manifestation of this relation is in De Morgan’s laws , which tell
how to restate the denial of a conjunction or disjunction as an
assertion of the other form of compound. Another manifestation is a
pattern in laws of relative exhaustiveness which allows us to
interchange conjunctions and disjunctions if at the same time we
interchange ⊥ and ⊤ and also premises and alternatives.

Glen Helman  15 Aug 2006
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4.2.x. Exercises

1. Use derivations to establish each of the claims of entailment and
equivalence shown below. (Remember that claims of equivalence
require derivations in both directions.)
a. A ∧ B ⇒ A ∨ B
b. A ∧ B ⇒ B ∨ C
c. A ∨ B, ¬ A ⇒ B
d. A ∨ (A ∧ B) ⇒ A
e. A ∨ B, ¬ (A ∧ C), ¬ (B ∧ C) ⇒ ¬ C
f. A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ C
g. A ∨ B, C ⇒ (A ∧ C) ∨ (B ∧ C)
h. A ∨ B, ¬ A ∨ C ⇒ B ∨ C
i. A ⇔ (A ∧ B) ∨ (A ∧ ¬ B)

2. Use derivations to establish each of the claims of equivalence below.
a. A ∨ A ⇔ A
b. A ∨ B ⇔ B ∨ A
c. A ∨ (B ∨ C) ⇔ (A ∨ B) ∨ C
d. A ∨ (B ∧ ¬ B) ⇔ A
e. ¬ (A ∨ B) ⇔ ¬ A ∧ ¬ B
f. ¬ (A ∧ B) ⇔ ¬ A ∨ ¬ B

3. Use derivations to check each of the claims below; if a derivation
indicates that a claim fails, present a counterexample that divides
an open gap.
a. A ∨ B, A ⇒ ¬ B
b. A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ C
c. ¬ (A ∨ B) ⇔ ¬ A ∨ ¬ B
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4.2.xa. Exercise answers

1. a. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (3)

│
││¬ A
│├─
││●
│├─

3 QED││B 2
├─

2 PE │A ∨ B

b. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (3)

│
││¬ C
│├─
││●
│├─

3 QED││B 2
├─

2 PE │B ∨ C

c. │A ∨ B 1
│¬ A (3)
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 Nc │││⊥ 2
│├─

2 IP ││B 1
│
││B (4)
│├─
││●
│├─

4 QED││B 1
├─

1 PC │B

d. │A ∨ (A ∧ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A ∧ B 3
│├─

3 Ext ││A (4)
3 Ext ││B

││●
│├─

4 QED││A 1
├─

1 PC │A

e. │A ∨ B 2
│¬ (A ∧ C) 3
│¬ (B ∧ C) 7
├─
││C (6),(10)
│├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
│││││●
││││├─

6 QED │││││C 4
│││├─

4 Cnj ││││A ∧ C 3
││├─

3 CR │││⊥ 2
││
│││B (9)
││├─
│││││●
││││├─

9 QED │││││B 8
││││
│││││●
││││├─

10 QED│││││C 8
│││├─

8 Cnj ││││B ∧ C 7
││├─

7 CR │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA │¬ C

f. │A ∧ (B ∨ C) 1
├─

1 Ext │A (5)
1 Ext │B ∨ C 2

│
││B (6)
│├─
│││¬ C
││├─
││││●
│││├─

5 QED││││A 4
│││
││││●
│││├─

6 QED││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 PE ││(A ∧ B) ∨ C 2
│
││C (8)
│├─
│││¬ (A ∧ B)
││├─
│││●
││├─

8 QED│││C 7
│├─

7 PE ││(A ∧ B) ∨ C 2
├─

2 PC │(A ∧ B) ∨ C



g. │A ∨ B 1
│C (5),(9)
├─
││A (4)
│├─
│││¬ (B ∧ C)
││├─
││││●
│││├─

4 QED││││A 3
│││
││││●
│││├─

5 QED││││C 3
││├─

3 Cnj │││A ∧ C 2
│├─

2 PE ││(A ∧ C) ∨ (B ∧ C) 1
│
││B (8)
│├─
│││¬ (A ∧ C)
││├─
││││●
│││├─

8 QED││││B 7
│││
││││●
│││├─

9 QED││││C 7
││├─

7 Cnj │││B ∧ C 6
│├─

6 PE ││(A ∧ C) ∨ (B ∧ C) 1
├─

1 PC │(A ∧ C) ∨ (B ∧ C)

h. │A ∨ B 1
│¬ A ∨ C 2
├─
││A (5)
│├─
│││¬ A (5)
││├─
││││¬ B
│││├─
│││││¬ C
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││C 3
││├─

3 PE │││B ∨ C 2
││
│││C (7)
││├─
││││¬ B
│││├─
││││●
│││├─

7 QED││││C 6
││├─

6 PE │││B ∨ C 2
│├─

2 PC ││B ∨ C 1
│
││B (9)
│├─
│││¬ C
││├─
│││●
││├─

9 QED│││B 8
│├─

8 PE ││B ∨ C 1
├─

1 PC │B ∨ C

i. │A (3),(7)
├─
││¬ (A ∧ B) 5
│├─
│││●
││├─

3 QED│││A 2
││
││││B (8)
│││├─
││││││●
│││││├─

7 QED││││││A 6
│││││
││││││●
│││││├─

8 QED││││││B 6
││││├─

6 Cnj │││││A ∧ B 5
│││├─

5 CR ││││⊥ 4
││├─

4 RAA│││¬ B 2
│├─

2 Cnj ││A ∧ ¬ B 1
├─

1 PE │(A ∧ B) ∨ (A ∧ ¬ B)

 │(A ∧ B) ∨ (A ∧ ¬ B) 1
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B

││●
│├─

3 QED││A 1
│
││A ∧ ¬ B 4
│├─

4 Ext ││A (5)
4 Ext ││¬ B

││●
│├─

5 QED││A 1
├─

1 PC │A

2. a. │A ∨ A 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A (3)
│├─
││●
│├─

3 QED││A 1
├─

1 PC │A

 │A (2)
├─
││¬ A
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ A



b. │A ∨ B 1
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 QED│││A 2
│├─

2 PE ││B ∨ A 1
│
││B
│├─
│││¬ A (5)
││├─
│││●
││├─

5 QED│││B 4
│├─

4 PE ││B ∨ A 1
├─

1 PC │B ∨ A

 │B ∨ A 2
├─
││¬ A (5)
│├─
│││B (3)
││├─
│││●
││├─

3 QED│││B 2
││
│││A (5)
││├─
││││¬ B
│││├─
││││●
│││├─

5 Nc ││││⊥ 4
││├─

4 IP │││B 2
│├─

2 PC ││B 1
├─

1 PE │A ∨ B

 c. │(A ∨ B) ∨ C 3
├─
││¬ A (6)
│├─
│││¬ B (8)
││├─
││││A ∨ B 4
│││├─
│││││A (6)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

6 Nc ││││││⊥ 5
││││├─

5 IP │││││C 4
││││
│││││B (8)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

8 Nc ││││││⊥ 7
││││├─

7 IP │││││C 4
│││├─

4 PC ││││C 3
│││
││││C (9)
│││├─
││││●
│││├─

9 QED││││C 3
││├─

3 PC │││C 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

This is the second of the two derivations needed;
the first appears in 4.2.3 . In that one, disjunctive
resources are exploited before disjunctive goals are
planned for while the derivation at the left here
illustrates the opposite approach.

 d. │A ∨ (B ∧ ¬ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││B ∧ ¬ B 3
│├─

3 Ext ││B (5)
3 Ext ││¬ B (5)

││
│││¬ A
││├─
│││●
││├─

5 Nc │││⊥ 4
│├─

4 IP ││A 1
├─

1 PC │A

 │A (2)
├─
││¬ (B ∧ ¬ B)
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ (B ∧ ¬ B)

 e. │¬ (A ∨ B) 3,7
├─
│││A (5)
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ A 1
│
│││B (9)
││├─
│││││¬ A
││││├─
│││││●
││││├─

9 QED│││││B 8
│││├─

8 PE ││││A ∨ B 7
││├─

7 CR │││⊥ 6
│├─

6 RAA││¬ B 1
├─

1 Cnj │¬ A ∧ ¬ B

 │¬ A ∧ ¬ B 1
├─

1 Ext │¬ A (4)
1 Ext │¬ B (5)

│
││A ∨ B 3
│├─
│││A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││B (5)
││├─
│││●
││├─
│││⊥ 3
│├─

3 PC ││⊥ 2
├─

2 RAA│¬ (A ∨ B)



 f. │¬ (A ∧ B) 3
├─
││A (5)
│├─
│││B (6)
││├─
│││││●
││││├─

5 QED│││││A 4
││││
│││││●
││││├─

6 QED│││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

 │¬ A ∨ ¬ B 3
├─
││A ∧ B 2
│├─

2 Ext ││A (4)
2 Ext ││B (5)

││
│││¬ A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││¬ B (5)
││├─
│││●
││├─

5 Nc │││⊥ 3
│├─

3 PC ││⊥ 1
├─

1 RAA│¬ (A ∧ B)

3. a. │A ∨ B 2
│A
├─
││B
│├─
│││A
││├─
│││○ A, B ⇏ ⊥
││├─
│││⊥ 2
││
│││B
││├─
│││○ A, B ⇏ ⊥
││├─
│││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ B

A B A ∨ B , A / ¬ B
T T Ⓣ Ⓣ Ⓕ

 b. │A ∨ (B ∧ C) 3,8
├─
│││¬ A (5)
││├─
││││A (5)
│││├─
│││││¬ B
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││B 3
│││
││││B ∧ C
│││├─

6 Ext ││││B 7
6 Ext ││││C

││││●
│││├─

7 QED ││││B 3
││├─

3 PC │││B 2
│├─

2 PE ││A ∨ B 1
│
│││A
││├─
││││¬ C
│││├─
││││○ A, ¬ C ⇏ ⊥
│││├─
││││⊥ 9
││├─

9 IP │││C 8
││
│││B ∧ C 10
││├─

10 Ext │││B
10 Ext │││C 11

│││●
││├─

11 QED│││C 8
│├─

8 PC ││C 1
├─

1 Cnj │(A ∨ B) ∧ C

 Since entailment fails in one
direction, equivalence must fail,
so a second derivation for
entailment in the other
direction need not be pursued;
but that entailment does hold,
as is shown below.

│(A ∨ B) ∧ C 1
├─

1 Ext │A ∨ B 2
1 Ext │C (8)

│
││A (4)
│├─
│││¬ (B ∧ C)
││├─
│││●
││├─

4 QED│││A 3
│├─

3 PE ││A ∨ (B ∧ C) 2
│
││B (7)
│├─
│││¬ A
││├─
││││●
│││├─

7 QED││││B 6
│││
││││●
│││├─

8 QED││││C 6
││├─

6 Cnj │││B ∧ C 5
│├─

5 PE ││A ∨ (B ∧ C) 2
├─

2 PC │A ∨ (B ∧ C)

Each of the following divides
the one open gap:
A B C A ∨ (B ∧ C) / (A ∨ B) ∧ C
T T F Ⓣ F T Ⓕ
T F F Ⓣ F T Ⓕ



 c. │¬ (A ∨ B) 3
├─
││A (5)
│├─
│││B
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

The following divide the first
and second open gap,
respectively:
A B ¬ A ∨ ¬ B / ¬ (A ∨ B)
F T T ⓉF Ⓕ T
T F F ⓉT Ⓕ T

 │¬ A ∨ ¬ B 2
├─
││A ∨ B 3,5
│├─
│││¬ A (4)
││├─
││││A (4)
│││├─
││││●
│││├─

4 Nc ││││⊥ 3
│││
││││B
│││├─
││││○ ¬ A, B ⇏ ⊥
│││├─
││││⊥ 3
││├─

3 PC │││⊥ 2
││
│││¬ B (6)
││├─
││││A
│││├─
││││○ A, ¬ B ⇏ ⊥
│││├─
││││⊥ 5
│││
││││B (6)
│││├─
││││●
│││├─

6 Nc ││││⊥ 5
││├─

5 PC │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ (A ∨ B)

Glen Helman  15 Aug 2006


