4.2.x. Exercises

1.

Use derivations to establish each of the claims of entailment and equivalence shown below. (Remember that claims of equivalence require derivations in both directions.)

a. A ∧ B ⇒ A ∨ B
b. A ∧ B ⇒ B ∨ C
c. A ∨ B, ¬ A ⇒ B
d. A ∨ (A ∧ B) ⇒ A
e. A ∨ B, ¬ (A ∧ C), ¬ (B ∧ C) ⇒ ¬ C
f. A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ C
g. A ∨ B, C ⇒ (A ∧ C) ∨ (B ∧ C)
h. A ∨ B, ¬ A ∨ C ⇒ B ∨ C
i. A ⇔ (A ∧ B) ∨ (A ∧ ¬ B)

2.

Use derivations to establish each of the claims of equivalence below.
a. A ∨ A ⇔ A
b. A ∨ B ⇔ B ∨ A
c. A ∨ (B ∨ C) ⇔ (A ∨ B) ∨ C
d. A ∨ (B ∧ ¬ B) ⇔ A
e. ¬ (A ∨ B) ⇔ ¬ A ∧ ¬ B
f. ¬ (A ∧ B) ⇔ ¬ A ∨ ¬ B
3.

Use derivations to check each of the claims below; if a derivation indicates that a claim fails, present a counterexample that divides an open gap.

a. A ∨ B, A ⇒ ¬ B
b. A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ C
c. ¬ (A ∨ B) ⇔ ¬ A ∨ ¬ B
Glen Helman 15 Aug 2006