
2.2. Proofs: analyzing entailment

2.2.0. Overview

Some insight into deductive logic can by looking at basic principles of
entailment, but more will come by looking at how these principles may
be combined in proofs.

2.2.1. Proofs as trees
The simplest way of combining deductive principles takes the shape of
a tree in which premises, premises for premises, and so on, grow and
branch from the final conclusion.

2.2.2. Derivations
Although tree-form notation can make the structure of a proof very
explicit, we will mainly use a compact notation that more closely
matches the patterns that are used when deductive reasoning is put
into words.

2.2.3. Rules for derivations
In the context of derivations, principles of entailment take the form of
rules that direct the search for a proof.

2.2.4. An example
All derivations involving conjunction alone share many features; we
will look closely at one typical example.

2.2.5. More rules
Tautology and absurdity provide the first example of derivation rules
for logical forms other than conjunction.

2.2.6. Resources
In order to plot a course in constructing a proof for a given
conclusion, we need to keep track of not only the premises but also
the conclusions that have already been reached.

Glen Helman 15 Aug 2006

2.2.1. Proofs as trees

Our study of entailments involving conjunction will rest on the
principles discussed in 2.1.1 . These are shown below in symbolic form
on the left and in English on the right:

φ ∧ ψ ⇒ φ both φ and ψ ⇒ φ
φ ∧ ψ ⇒ ψ both φ and ψ ⇒ ψ
φ, ψ ⇒ φ ∧ ψ φ, ψ ⇒ both φ and ψ.

We will refer to the first two of these patterns as extraction (left and
right extraction when we wish to distinguish them) and to the third
simply as conjunction. To establish particular cases of entailment, we
will want to link together special cases of these general patterns and,
eventually, of other patterns, too.

One notation for doing that employs something like the two-
dimensional form we have used for arguments, with the conclusion
below the premises and marked off from them by a horizontal line. In
order to make the premises of a multi-premised argument available to
serve as conclusions of further argument, we will spread them out
horizontally. In this style of notation, the basic patterns for conjunction
take the following forms (where abbreviations of their names are used
as labels):

 φ ∧ ψ
Ext

 φ

 φ ∧ ψ
Ext

 ψ

 φ ψ
Cnj

 φ ∧ ψ

Arguments exhibiting these patterns can be linked by treating the
premises of one argument as conclusions of other arguments. For
example, the following shows that (A ∧ B) ∧ C is a valid conclusion from
the two premises A and B ∧ C:

 B ∧ C
 Ext
 A B B ∧ C

Cnj Ext
 A ∧ B C

Cnj
 (A ∧ B) ∧ C

The ability to put the principles for conjunction together in this way
rests on the general laws of entailment discussed in 1.4.7 . The law for
premises enables us to begin; it shows that the premises A and B ∧ C
entail the tips of the branches of this tree-like proof. Repeated uses of
the chain law then enable to add conclusions drawn using the principles

the chain law then enable to add conclusions drawn using the principles
for conjunction, and we work our way down the tree showing that the
original set of premises entails each intermediate conclusion and,
eventually, (A ∧ B) ∧ C. For example, just before the end, we know that
our original premises entail each of the premises of the final conclusion
—i.e., that A, B ∧ C ⇒ A ∧ B and A, B ∧ C ⇒ C. The chain law then
enables us to combine these entailments with the fact that
A ∧ B, C ⇒ (A ∧ B) ∧ C (a case of Conjunction) to show that A, B ∧
C ⇒ (A ∧ B) ∧ C.

These tree-form proofs are less helpful in the case of other
connectives; and, in 2.3 , we will look at a different way of arguing in
the case of conjunction that is better suited to other logical forms. We
can make one step in that direction now by looking at some basic
principles for entailment that describe the conditions under which any
arguments involving conjunction are valid.

LAW FOR CONJUNCTION AS A PREMISE. Γ, φ ∧ ψ ⇒ χ if and only if
Γ, φ, ψ ⇒ χ

LAW FOR CONJUNCTION AS A CONCLUSION. Γ ⇒ φ ∧ ψ if and only if both
Γ ⇒ φ and Γ ⇒ ψ

These principles can be seen to hold by the comparing the sort of
possible worlds each side of the if and only if rules out. In the first
principles, each side rules out the possibility of a world in which χ is
false while φ, ψ, and the members of Γ are all true; that means that
these two entailments offer equivalent guarantees, so each holds if and
only if the other does. In the second principle, the sort of worlds ruled
out by guarantee on the left are the worlds in which the members of Γ
are all true but φ or ψ is false, and the same worlds are ruled out when
we have both the guarantees on the right. The upshot is that these two
principles suffice, together with the law of premises, to establish any
cases of validity that depend on conjunction alone.

The if part of these principles reflects the validity of arguments of the
forms Ext and Cnj (together with the chain law). The only if part of the
first tells us that whatever a conjunction contributes as a premise of a
valid argument is already contributed by the conclusions we could derive
by Ext; that is, our use of a conjunction among the premises need only
be by way of Ext. The only if part of the second tells us that, if a
conjunction is a valid conclusion, then the premises needed to reach it
by Cnj are themselves valid conclusions. When conjunction is the only
connective employed in our analysis of sentences, applying these two
principles repeatedly will eventually bring us back to arguments whose
premises and conclusions are all unanalyzed components. If these

premises and conclusions are all unanalyzed components. If these
components are logically independent, an argument whose premises and
conclusion are drawn from them is valid when and only when its
conclusion is among its premises; thus, if it is valid, its validity follows
by the law of premises.

A couple of the principles for ⊤ and ⊥—those for ⊤ as a conclusion
and ⊥ as a premise —assert the validity of arguments and can be used to
build tree-form proofs:

ENV

 ⊤

 ⊥
EFQ

 φ

The label for the second, EFQ, abbreviates the Latin ex falso quodlibet
(which might be translated as from the false, whatever), a traditional
description the law for ⊥ as a premise, and the label for the first, ENV,
abbreviates ex nihilo verum (from nothing, the true), which gives a
corresponding description of the law for ⊤ as a conclusion.

The argument ENV has no premises and serves to close off a branch
of a tree, making it one that need not have a premise at its tip—as in the
following proof, which shows that A, B ⇒ (B ∧ ⊤) ∧ A:

 ENV
 B ⊤

Cnj
 B ∧ ⊤ A

Cnj
 (B ∧ ⊤) ∧ A

The pattern EFQ enables us to connect a proof ending with the
conclucsion ⊥ to the tip of any branch. The following example uses it to
show that A ∧ (⊥ ∧ B) ⇒ C ∧ D:

 A ∧ (⊥ ∧ B) A ∧ (⊥ ∧ B)
Ext Ext

 ⊥ ∧ B ⊥ ∧ B
Ext Ext

 ⊥ ⊥
EFQ EFQ

 C D
Cnj

 C ∧ D

The premise A ∧ (⊥ ∧ B) is the starting point for proofs ending in A and
B, too, but these proofs would never be needed. Even if A and B were
required as premises in an argument, the proof ending with ⊥ would
have been enough to yield them just as it yields C and D.

have been enough to yield them just as it yields C and D.
The two other laws for ⊤ and ⊥ have a different significance. The law

for ⊤ as a premise does not correspond to any pattern of valid
argument. It merely tells us that any proof ending with ⊤ would
contribute nothing to a larger proof and may be ignored. Of course,
such a proof might be connected to a branch of proof that has ⊤ at its
tip; but a branch like that could be closed off by ENV instead. The law
for ⊥ as an alternative does not figure as a principle governing the
construction of proofs at all; recall that we have no law for ⊥ as a
conclusion. Having ⊥ as a conclusion marks a proof as a proof of
inconsistency, and such proofs are constructed solely by drawing
conclusions from their premises.

Glen Helman 15 Aug 2006

2.2.2. Derivations

The tree-form proofs of the last section are probably the clearest way of
presenting the structure of proofs; however, they are not very compact.
This is in part because they are two-dimensional and in part because the
premises and any conclusions reached from them by Ext may be
repeated several times in the proof. In practice, we will use a more
linear, though still somewhat two-dimensional, notation. We will gain
compactness by writing premises and conclusions in a more-or-less
vertical way and by minimizing the repetition of premises that are used
draw a number of conclusions. But we also make other gains. The
notation is designed to incorporate more directly the process of proof
discovery, and the notation will approximate some of the ways the
structure of proofs is reflected in the essentially linear way
argumentation is presented in language. Indeed, although we will not
approach in this way, the notation for proofs could be thought of as a
notation for analyzing the form of proofs presented in English that is in
some respects analogous to our symbolic notation for analyzing the
logical forms of sentences.

This machinery will be, as are tree-form proofs, much more than we
need to settle questions of entailment involving only conjunction. But
we will need more complex approaches eventually; and, because we
have simpler ways of seeing that entailments hold in the case of
conjunction, it will be easier to see how and why this method works if
we develop it now.

The system to be developed here falls into a broad class often referred
to as natural deduction systems because they replicate, to some
extent, natural patterns of reasoning. Such systems were first set out in
full in the 1930s by G. Gentzen and also by S. Jaskowski, but some of
the key ideas can be found already in the Stoic philosopher Chrysippus
(who lived in the 3rd century B. C.). The notation we will be using is an
adaptation of notation introduced by F. B. Fitch but our approach to
these systems will be influenced heavily by the “semantic tableaux” of E.
Beth. (Their ideas are now about 50 years old.)

This system, which we will call a system of derivations, will
employ a perspective on proofs that we adopted in the last section
whenever we considered ways of restating claims of entailment. If we
ask whether an entailment holds, we find ourselves faced with the task
of reaching the conclusion from the premises (or showing that it cannot
be reached). Let us think of the conclusion as our goal and of the
premises as the resources we have available in trying to reach that
goal. Until we reach the goal, it is separated from our resources by a

goal. Until we reach the goal, it is separated from our resources by a
gap that it is our aim to close.

We will approach the problem of closing this gap (or showing that it
cannot be closed) step by step, at each step analyzing the way our goal
may be reached or exploiting our resources by drawing conclusions from
them. In making a step of either sort, we will restate our problem with
different goals or resources; and we will say that, in restating it in this
way, we are developing the derivation. The problem of closing a gap as
seen from this perspective corresponds to the problem of matching
needed premises and available conclusions, and the development of a
derivation amounts to the process of working forward from premises
and backward from conclusions in hopes of making this connection.

We begin with a single gap between the premises and conclusion our
initial question concerns. This gap can be closed immediately if the
conclusion is among the premises. Otherwise we will analyze our goal
(at first the original conclusion) or exploit our resources (at first the
original premises). When we analyze a goal, we establish subgoals,
intermediate conclusions from which the goal can be reached by Cnj.
This divides the problem into subproblems, each focused on the gap
between our resources and one of these new goals. As we exploit
resources by Exp, we make new resources available to connect to our
goals. If the goals and unexploited resources all end up as unanalyzed
components, we have done as much as we can to prepare gaps to be
closed and, if they cannot be closed at this point, we know that the
initial argument is not valid.

A derivation will be written as a more or less vertical list of sentences
marked up in various ways to indicate the structure of the
corresponding tree-like proof. The subgoals that would be from which a
conclusion is reached by Cnj will be written one above the other, each
preceded by space for further growth, and chains of conclusions from
premises will be collapsed by superimposing any shared segments. In
effect, we will construct a tree-form proof disassembled in order to be
packed flat, and we will be careful to number the parts in order to
indicate how it should be assembled.

We begin in the state shown in Figure 2.2.2-1.

│premise
│premise ← resources
│premise
├─
│
│ ← gap
│
├─
│conclusion ← goal

Fig. 2.2.2-1. The initial state of a derivation.

The premises of the argument (if it has any) are written above a
horizontal line, and the conclusion is written below a second line. The
space in between the horizontal lines marks the gap and will be filled in
with additional resources and new goals as the derivation develops.

The vertical line at the left in Figure 2.2.2-1 is a scope line and will
serve us in a number of ways. First of all, new scope lines will be
introduced as we analyze goals with a separate scope line serving to
mark the portion of the derivation devoted to further analysis of each
subgoal. This part of subderivation is where the subgoal is the
conclusion we seek to establish, and it is in this sense the scope of the
subgoal. As scope lines accumulate, they will be nested, some to the
right of others, in a way that indicates the branching of a tree-form
proof. In later chapters, proofs will sometimes involve assumptions
beyond the initial premises, and scope lines will then also serve to mark
the portions of a proof in which these assumptions are being made.
Later still, the scope lines will be labeled to indicate vocabulary that has
a special role in a portion of a derivation.

At any stage in the development of a derivation, each gap will have
certain active resources. These are resources available for use in the
gap that have not already been exploited in developing it. Our aim will
always be to see whether the goal of a gap is entailed by its active
resources.

Glen Helman 15 Aug 2006

2.2.3. Rules for derivations

One way of developing a gap is to restate our problem so that one of its
resources can be dropped from consideration, perhaps adding others of
equivalent power but simpler form. We will call this process
exploitation, and it will correspond to a particular way of growing
chains of conclusions: always drawing conclusions by both left and right
Ext from the end of one of them. The law for conjunction as a premise
tells us that anything we can conclude from premises that include a
conjunction can still be concluded if we replace the conjunction by its
two components. This means that, when we use left and right extraction
together, we can eliminate any further need to consider the conjunction
we are exploiting. Because we always add both components of a
conjunction we exploit, a derivation may contain conclusions that are
never used later and would not appear in the corresponding proof tree.

Although we will apply left and right extraction together, we do not
duplicate the shared segment of the two resulting chains, so the
derivation rule Extraction takes the form shown in Figure 2.2.3-1.

│…
│φ ∧ ψ
│…
│
││…
││
││
││
││…
│…

→

│…
│φ ∧ ψ n
│…
│
││…

n Ext││φ
n Ext││ψ

││
││…
│…

Fig. 2.2.3-1. Developing a derivation by exploiting a conjunction at stage
n.

On the left, the gap is shown nested inside scope lines (two are shown
but there may be just one or more than two). A conjunction is displayed
at the top to show that one is among resources available for use in this
gap. It is shown to the right of one of the scope lines running to the left
of the gap but not the other. The requirement this illustrates is that a
resource being exploited need not be inside all the scope lines to the left
of the gap but cannot be inside any extra ones; that is, all lines to the
left of the resource must continue to the left of the gap.

The right side of the figure illustrates the results of exploiting the
conjunction. When we exploit it, we add its components as new
resources at the top of the gap. If either component of the conjunction is
already among the active resources of the gap, this component need not
be added again, but there is nothing wrong with doing so. The number n

be added again, but there is nothing wrong with doing so. The number n
of this stage in the development of the derivation is written to the right
of the conjunction to show that it has been exploited at this stage, and
the stage number is also shown, along with the label Ext, to the left of
the two lines that are added. Once the conjunction has been exploited, it
is no longer an active resource for this gap though it could be active in
other gaps (we will see later how to tell). The numbers in a derivation
thus record the order of its development and also provide a way of
telling when and where resources are exploited.

These numbers are also one of the devices derivations use to encode
the structure of tree-form proofs: they mark the relation between
premises and conclusion that tree-form proofs mark by a horizontal
line. In English argumentation, words and phrases like therefore,
hence, and it follows that indicate the same sorts of connections
though in a less explicit way.

Another way to narrow a gap is to restate the problem it represents so
that the goal we seek to reach is replaced by one or more simpler goals.
We will call this process goal planning. The law for conjunction as a
conclusion tells us how we may plan for a goal that is a conjunction.
Such a goal is entailed by our active resources if and only if each of its
components is entailed. So the project of reaching a conjunction φ ∧ ψ
from given resources comes to the same thing as completing two
projects—namely, reaching each of the components φ and ψ from those
same resources. This sort of goal planning thus uses Conjunction and
takes the form shown in Figure 2.2.3-2.

│…
│
││…
││
││
││
││
││
││
││
││
││
││
│├─
││φ ∧ ψ
│…

→

│…
│
││…
││
│││
│││
││├─
│││φ n
││
│││
│││
││├─
│││ψ n
│├─

n Cnj││φ ∧ ψ
│…

Fig. 2.2.3-2. Developing a derivation by planning for a conjunction at
stage n.

On the left, no assumptions are made about the resources, but the goal
is shown as a conjunction. On the right, we have introduced two new
gaps, each with one of the conjunction’s components as its goal. The two
new goals bring with them two scope lines and are marked off by
horizontal lines (as was the initial conclusion) to show that they
represent the new material that led to the use of new scope lines. At the
right of each of the new goals is a number showing the stage at which it
was added. The same number appears to the left of the goal along with
the label Cnj.

While in the case of Ext, numbers appeared at the left of the resources
that were added and at the right of the resource being exploited,
numbers here appear on the right of the new goals and at the left of the
old one. This is because the new goals are introduced as premises from
which the old one may be concluded while the resources added by Ext
are added as conclusions drawn from the resource that is exploited; but,
in both cases, the numbers mark a connection between premises and
conclusions. The numbers here also serve, as do those for Ext, to show
that an element of the derivation has been superceded by new additions.
But, in the case of Cnj, this information is also provided in other ways: a
gap will always have exactly one goal, and that goal will appear
immediately below it.

The new gaps introduced in planning for a conjunction initially have
the same active resources as the original gap. As resources are exploited
in narrowing one of the gaps, these resources will become inactive for
that gap; but they will remain active for the other gap until they are
exploited there. When a derivation contains more than one gap, the
question of where resources are active becomes important, and
something will be said about it shortly. But, when we are dealing with
conjunction alone, it is possible to mimic the procedure used for tree-
form proofs and exploit the initial resources completely before we plan
for goals. As a result, a general discussion of active and inactive
resources can be postponed until we have considered an actual example
of a derivation.

What we cannot postpone is an account of how a gap may be closed.
If the goal of a gap appears also among its resources, the law for
premises tells us that the goal is entailed by these resources, and the gap
may be closed. The rule we use to do this is shown in Figure 2.2.3-3
below.

│…
│φ [available]
│…
│
││…
││
│├─
││φ
│…

→

│…
│φ (n)
│…
│
││…
││●
│├─

n QED││φ
│…

Fig. 2.2.3-3. Closing a gap by locating its goal among its resources.

The label for this rule abbreviates the Latin phrase quod erat
demonstrandum, which might be translated as what was to be proven.
This Latin phrase is traditionally used when a planned conclusion is
reached.

The stage number appears to the left of the goal (along with the label)
since the goal is the conclusion, and it appears to the right of the
resource since the resource is the premise. The latter number is enclosed
in parentheses to indicate that the premise is not here being exploited.
Since the gap is closed, the question whether a resource is active or not
becomes moot, but this sort of notation will be used later in other cases
where resources are used without being replaced by simpler resources of
equivalent content; and QED shares with these rules the feature that the
resources to which it is applied do not need to be active. To make it easy
to see that the gap is now closed, it is filled with the symbol ● (a black
circle). This is really not part of the derivation itself and is not given a
stage number; it instead functions like stage numbers to indicate the
organization of a derivation. Think of an analogy with written language:
the symbol ● marks the end of a series of stages in the way a period
marks the end of a series of words.

Glen Helman 15 Aug 2006

2.2.4. An example

Now, let us restate an example for which we used tree-form proofs,
now using the notation for derivations. The development is shown stage
by stage below. At each stage, new material is shown in red. Resources
that are exploited or goals that are planned for are shown in blue. At
each of the stages 1 and 2, a resource is exploited. The added resources
are conclusions drawn from the exploited resource, so the number of the
stage is written at the left of the resources that are added and at the
right of the one that is exploited.

│(A ∧ B) ∧ C
│D
├─
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B
1 Ext│C

│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
││
│├─
││C 3
│
││
││
││
││
││
││
││
│├─
││A ∧ D 3
├─

3 Cnj│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
││
│├─
││C 3
│
│││
││├─
│││A 4
││
│││
││├─
│││D 4
│├─

4 Cnj││A ∧ D 3
├─

3 Cnj│C ∧ (A ∧ D)

In stages 3 and 4, we plan for goals. The goals we add in each case are
premises from which we plan to conclude the one they replace. The

premises from which we plan to conclude the one they replace. The
stage number therefore appears at the right of the new goals and to the
left of the one we plan for.

In the last three stages we close gaps.

│(A ∧ B) ∧ C 1
│D
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││
││├─
│││A 4
││
│││
││├─
│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││
││├─
│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

No sentences are added and the stage numbers merely mark the
connection between resources that serve as premises and the goals that
are concluded from them.

The proof tree from the original example is shown below with
corresponding stage numbers added and with colors used to group
items added at the same stage.

(A ∧ B) ∧ C
1 Ext

A ∧ B
2 Ext

(A ∧ B) ∧ C A D
1 Ext 6 QED 7 QED

C A D
5 QED 4 Cnj

C A ∧ D
3 Cnj

C ∧ (A ∧ D)

In stages 1 and 2, the new sentences lie below the horizontal line that is
added because they are conclusions we draw as we move down chains of
conclusions. In stages 3 and 4, the new sentences are above the line
because they are premises from which we plan to reach the conclusion
lying below them in a tree-form proof. And in the last three stages only
the line is added because we are merely connecting conclusions we have
accumulated to premises we have found we need. We use the label QED
here, treating it as a pattern of argument whose conclusion is its only
premise.

premise.
The diagram below shows the derivation and tree-form proof side by

side. If your browser has JavaScript enabled, it can be used to display
the state of both the derivation and the tree-form proof stage by stage.
Simply place the cursor over the number of each stage in turn. (0 is
used as the number of the initial stage.) The elements of the tree-form
proof are shown in their final location, so the premises appear (with the
first one repeated) above the points where they are eventually connected
to the branches growing up from the conclusion.

0 1 2 3 4 5 6 7

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

(A ∧ B) ∧ C
Ext

A ∧ B
Ext

(A ∧ B) ∧ C A D
Ext QED QED

C A D
QED Cnj

C A ∧ D
Cnj

C ∧ (A ∧ D)

One difference between the two proofs appears at stage 2, when the
resources A and B are added to the derivation while only A appears as a
conclusion in the tree-form proof. This is because a derivation leads us
to accumulate as many conclusions as possible from our premises and B
is one that is never needed to reach the final conclusion, something that
is shown by the fact that no number appears to its right.

Glen Helman 15 Aug 2006

2.2.5. More rules

The principles Ex Nihilo Verum and Ex Falso Quodlibet appear in
derivations as rules for closing gaps. In the case of the first, for a gap to
be closed it is enough that it have ⊤ as its goal. No resource is involved,
and the stage number appears only as an annotation to the goal.

│…
│
││…
││
│├─
││⊤
│…

→
│…
│
││…
││●
│├─

n ENV││⊤
│…

Fig. 2.2.5-1. Closing a gap that has ⊤ as its goal.

The rule EFQ takes a form much like QED.

│…
│⊥
│…
│
││…
││
│├─
││φ
│…

→

│…
│⊥ (n)
│…
│
││…
││●
│├─

n EFQ││φ
│…

Fig. 2.2.5-2. Closing a gap that has ⊥ among its resources.

The difference is that having ⊥ as a resource enables us to close a gap
no matter what its goal is. (If the goal also was ⊥, either EFQ or QED
could be used.)

In 2.2.1 , ENV and EFQ were illustrated by using tree-form proofs to
show that A, B ⇒ (B ∧ ⊤) ∧ A and that A ∧ (⊥ ∧ B) ⇒ C ∧ D. As
derivations, these proofs take the following forms:

│A (5)
│B (3)
├─
│││●
││├─

3 QED│││B 2
││
│││●
││├─

4 ENV│││⊤ 2
│├─

2 Cnj ││B ∧ ⊤ 1
│
││●
│├─

5 QED││A 1
├─

1 Cnj │(B ∧ ⊤) ∧ A

 │A ∧ (⊥ ∧ B) 2
├─

2 Ext │A
2 Ext │⊥ ∧ B 3
3 Ext │⊥ (4),(5)
3 Ext │B

│
││●
│├─

4 EFQ││C 1
│
││●
│├─

5 EFQ││D 1
├─

1 Cnj │C ∧ D

Notice that, while every stage number of the second derivation appears
somewhere among the annotations on its right-hand side, the same is
not true of the first derivation because stage 4 is missing. Of course,
that’s because stage 4 is when we used ENV, and ENV is a valid
argument without premises. Since stage numbers appearing in
annotations on the left-hand side of a derivation correspond to
horizontal lines lying above conclusions in the tree-form proof and ENV
is the only form of argument so far without premises, it should be the
only reason for a stage number to appear on the left but not the right.

You can use this idea as a way of checking for errors, and there are
some further generalizations like this that you can use as checks. We
will have no rules without conclusions, so every stage number should
appear somewhere in the left-hand annotations. And, in a completed
derivation whose gaps all close, all sentences other than assumptions
(which, for now, are just the initial premises) will be conclusions and
thus should have annotations on their left-hand side. Resources that are
never used may appear with no annotations on their right; but, as you
are constructing a derivation, it can be very useful to check for the
absence of right-hand annotations because this can lead you to notice
resources that you have not yet exploited. And, when we go on (in 2.3)
to use derivations to show that claims of entailment fail, a check for the
absence of right-hand annotations will be the key test of whether we
done everything possible to complete a derivation.

Glen Helman 15 Aug 2006

2.2.6. Resources

The ideas of available and active resources have been used at several
points already, but they have not yet been explained fully. A resource
counts as available in a gap if it was entered either as one of the initial
premises of the derivation or in the course of developing the gap in
question. The system of scope lines can be used to tell which resources
are available in a gap: a resource is available if every scope line to its left
continues unbroken at the left of the gap.

One way of thinking about this is shown in Figure 2.2.6-1.

│resource(s)
├─
│resource(s)
│
│
││resource(s)
││gap
│├─
││goal
│
│
│
││resource(s)
││
││
│││resource(s)
│││gap
││├─
│││goal
││
││
││
│││resource(s)
│││gap
││├─
│││goal
││
│├─
││goal
│
├─
│goal

Fig. 2.2.6-1. The boxes indicated by the scope lines of a derivation. If
JavaScript is enabled on the browser you are using, moving the cursor
over a resource will color the gaps in which it is available green and shade
areas where it is unavailable. Moving the cursor over a gap will color
resources available in it green and shade areas whose resources are
unavailable to it. The resource or gap that the cursor is over will be
colored blue and underlined.

You may suppose that each scope line indicates the left side of a box and
that a resource is available only to the gaps that are also within the
smallest box containing it.

A resource is active in a gap if it is available in that gap and has not
already been exploited in narrowing it. The easiest way to locate the
active resources of a gap is to scan the available resources and eliminate
the inactive ones. To be inactive in any gap, a resource must have been
exploited at some stage. If it has, there will be an unparenthesized stage
number to its right. A resource may have been exploited only in some
gaps and may still remain active in others. To be inactive in a given gap,
the resource must have been exploited in narrowing the gap. To see
whether this is so, we need to check all resources and goals that were
introduced at a stage when the resource was exploited (i.e., at a stage
whose number appear unparenthesized to the resource’s right). (So far,
we have seen goals introduced only in the course of planning for more
distant goals, but in later chapters they will be introduced as part of the
exploitation of certain resources.) If any such resource or goal is such
that the smallest box containing it also contains the gap we are
considering, it was introduced in the course of developing the gap. A
resource may be exploited more than once, so there may be several
stage numbers you will need to check. If any of them was a stage in
which the gap you are considering was developed, the resource is no
longer among the active resources of the gap.

This is illustrated by the partially developed derivation shown below.

│(A ∧ B) ∧ C 1
├─

1 Ext │A ∧ B 3
1 Ext │C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

The three steps at the top of the derivation are resources available for
each of the derivation’s three gaps. The first, (A ∧ B) ∧ C, is inactive in
all three gaps. It was exploited at stage 1, and that was the initial stage
of development for all the gaps of the derivation. The second resource,

of development for all the gaps of the derivation. The second resource,
A ∧ B, is inactive for the first of the gaps (having been exploited at stage
3 in developing this gap), but it is active for the remaining two gaps
since the resources introduced at stage 3 did nothing to narrow these
gaps (as is shown by the fact that the gaps are outside the smallest box
surrounding the resources with 3 at their left). The third resource C has
not been exploited at all (and could not be since it is not a conjunction),
so it is active for all three gaps. Since the resource exploited at stage 3
must be exploited again in order to close the second gap, it would have
been a little more efficient to exploit this resource before dividing the
initial gap in two; but the derivation as shown is perfectly correct
(though still unfinished).

You may suppose that a given gap can see only those parts of a
derivation that are not boxed off from it—i.e., only those parts all of
whose scope lines continue to the left of the gap. If a stage number
appears at the left only in parts of the derivation that are invisible to the
gap, it is also invisible—even when it appears to the right of resources
that are visible.

This idea is illustrated in Figure 2.2.6-2 below where the same
derivation is shown from the perspective of each of the three gaps in
turn.

│(A ∧ B) ∧ C 1
├─

1 Ext │A ∧ B 3
1 Ext │C

│
3 Ext││A
3 Ext││B

││gap 1
│├─
││A 2
│
│││
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

│(A ∧ B) ∧ C 1
├─

1 Ext │A ∧ B 3
1 Ext │C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││gap 2
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

│(A ∧ B) ∧ C 1
├─

1 Ext │A ∧ B 3
1 Ext │C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││
││├─
│││B 4
││
│││gap 3
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

A B C

Fig. 2.2.6-2. A derivation from the perspective of each of its three gaps.

Material that is boxed off from a gap is shown in light gray. Notice that
the number 3 at the right of the second line is invisible to the second
and third gaps. As we saw earlier, that is because all the development at
stage 3 is boxed off from the second and third gaps.

Any derivation can be thought of as the result of superimposing
separate layers like these. There will be one layer for each gap with a
gap’s layer depicting its perspective on the derivation. When we
distinguish the resources available for a gap or determine whether a
resource has been used to narrow a gap, we are really considering that
gap’s layer separately.

When a gap is divided before a resource is exploited to narrow it, it is
possible to exploit the resource to narrow several gaps at once. This is
shown in the partial derivation below (which has the same initial
premises and conclusion as the one we have been considering).

│(A ∧ B) ∧ C 1
├─

1 Ext │A ∧ B 4
1 Ext │C

│
4 Ext││A
4 Ext││B

││
│├─
││A 2
│

4 Ext│││A
4 Ext│││B

│││
││├─
│││B 3
││
│││
││├─
│││C 3
│├─

3 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

In this derivation, one of the resources has just been exploited at stage 4
to narrow two different gaps. Thereafter, it is inactive in these gaps but
still active in the third (where it happens to be unneeded). Some of the
resources added at stage 4 will be invisible to each of the first two gaps;
but, because other added resources are visible, the number 4 at the right
is visible from both these gaps. However, none of the resources added at
stage 4 is visible from the third gap, so the number 4 at the right is not
visible from it.

Since we use a similar numerical notation for both resources that are
exploited and goals that have been planned for, you might expect that
the concepts of availability and activity can be applied to goals as well as
resources; and, indeed, they can be. If we were to consider derivations
for relative exhaustiveness, we would need to engage in the same sort of
accounting for goals that we have been considering for resources.
However, in a system of derivations for entailment alone like the one we
will actually use, each gap has just one active goal, which appears just
below the gap. Goals at earlier stages of a gap’s development (i.e., the
goals that are not boxed off from the gap) could be described as
“available”, but they are not available for any sort of use. In particular,
although we can consider all available resources when looking for a way
of closing a gap, it is only the active goal and not any earlier one that we
consider. (Some of the arguments of 2.3.2 could be used to show that
considering all “available” goals would not lead us to count an invalid
argument as valid, but looking at derivations in this way would make
them less like the patterns of ordinary explicit deductive argumentation,
which seem to be focused always on a single conclusion.)

Glen Helman 15 Aug 2006

1

2

3

4

5

6

2.2.s. Summary

One way of combining principles of entailment uses the graphical idea
of a tree. This provides a natural notation for the patterns of argument
conjunction and extraction . The adequacy of this approach to
entailment concerning conjunction can be shown by considering
principles of entailment that state conditions for the validity of
arguments that have conjunctions as conclusions or as premises .
And patterns of argument, also with Latin names, can be added to
capture the properties of ⊤ (ex nihilo verum) and ⊥ (ex falso
quodlibet).

In fact, we will use a different, more compact notation for combining
principles of entailment—a kind of natural deduction system that we
will refer as a system of derivations . This notation presents the
project of showing that an entailment holds as the task of closing a
gap between its conclusion, which serves as a goal , and its premises,
which serve as resources . As we narrow the initial gap (and others
that result from it), we develop the derivation. The branching
structure of tree-form proofs is represented in part by a system of
vertical scope lines and in part by numerical annotations.

The laws of entailment appear as rules for exploiting resources,
planning for goals, and closing gaps. There are rules for each of the
patterns of argument that figure in tree-form proofs. The key rules for
conjunction are Extraction (Ext) and Conjunction (Cnj) . Quod Erat
Demonstrandum (QED) is used to close a gap when its goal is among
its resources, and the symbol ● (a black circle) marks a closed gap.

When a derivation is developed, numbers are used along with the
labels for rules to record both the order of the development and the
connection between the premises and conclusions of the rules.

Principles of entailment for other logical forms will be associated with
further rules. Those for ⊤ and ⊥ are the rules Ex Nihilo Verum
(ENV) and Ex Falso Quodlibet (EFQ) .

We keep track of changes in the information contained in goals and
resources by using the scope lines of a derivation to tell in which gaps
given resources are available and in which gaps available resources
are still active .

Glen Helman 15 Aug 2006

2.2.x. Exercise questions

1. Restate the derivation below as a tree-form proof, labeling each
horizontal line with the number of the stage at which it is entered.
That is, do what is done with the example in 2.2.4

 │(A ∧ C) ∧ B 1
├─

1 Ext │A ∧ C 2
1 Ext │B (4)
2 Ext │A
2 Ext │C (5)

│
││●
│├─

4 QED││B 3
│
││●
│├─

5 QED││C 3
├─

3 Cnj │B ∧ C

2. Use the system of derivations to establish each of the following
claims of entailment:

a. A ∧ B ⇒ B ∧ A

b. A ⇒ A ∧ A

c. A ∧ (B ∧ C) ⇒ (C ∧ B) ∧ A

d. A, B ∧ C, D ⇒ (C ∧ (B ∧ A)) ∧ B
[The derivation for d will have three premises above the
initial horizontal line.]

e. A ∧ (B ∧ C) ⇒ (B ∧ A) ∧ (C ∧ A)

Glen Helman 15 Aug 2006

2.2.xa. Exercise answers

1.

 (A ∧ C) ∧ B
 1 Ext

 (A ∧ C) ∧ B A ∧ C
1 Ext 2 Ext

 B C
4 QED 5 QED

 B C
3 Cnj

 B ∧ C

2. a. │A ∧ B 1
├─

1 Ext │A (4)
1 Ext │B (3)

│
││●
│├─

3 QED││B 2
│
││●
│├─

4 QED││A 2
├─

2 Cnj │B ∧ A

 b. │A (2),(3)
├─
││●
│├─

2 QED││A 1
│
││●
│├─

3 QED││A 1
├─

1 Cnj │A ∧ A

 c. │A ∧ (B ∧ C) 1
├─

1 Ext │A (7)
1 Ext │B ∧ C 2
2 Ext │B (6)
2 Ext │C (5)

│
│││●
││├─

5 QED│││C 4
││
│││●
││├─

6 QED│││B 4
│├─

4 Cnj ││C ∧ B 3
│
││●
│├─

7 QED││A 3
├─

3 Cnj │(C ∧ B) ∧ A

 d. │A (7)
│B ∧ C 1
│D
├─

1 │B (6)
1 │C (5)

│
│││●
││├─

5 QED│││C 3
││
││││●
│││├─

6 QED││││B 4
│││
││││●
│││├─

7 QED││││A 4
││├─

4 Cnj │││B ∧ A 3
│├─

3 Cnj ││C ∧ (B ∧ A) 2
│
││●
│├─
││B 2
├─

2 Cnj │(C ∧ (B ∧ A)) ∧ B 2

 e.

 e. │A ∧ (B ∧ C) 1
├─

1 Ext │A (7),(9)
1 Ext │B ∧ C 2
2 Ext │B (6)
2 Ext │C (8)

│
│││●
││├─

6 QED│││B 4
││
│││●
││├─

7 QED│││A 4
│├─

4 Cnj ││B ∧ A 3
│
│││●
││├─

8 QED│││C 5
││
│││●
││├─

9 QED│││A 5
│├─

5 Cnj ││C ∧ A 3
├─

3 Cnj │(B ∧ A) ∧ (C ∧ A)

Glen Helman 15 Aug 2006

