Philosophy 270, Fall 2006

Examples for the derivation worksheet

procedure pdf worksheet pdf
A ∧ D, C ∧ ¬ (D ∧ E) ⇒ C ∧ ¬ E
off 0 1 2 3 4 5 6 7 8 9 all
A ∧ D 1
C ∧ ¬ (D ∧ E) 2
├─
1 Ext A
1 Ext D (8)
2 Ext C (4)
2 Ext ¬ (D ∧ E) 6
├─
4 QED C 3
│E (9)
├─
├─
8 QED │D 7
├─
9 QED │E 7
├─
7 Cnj │D ∧ E 6
├─
6 CR │⊥ 5
├─
5 RAA │¬ E 3
├─
3 Cnj C ∧ ¬ E
 gap prox. arg. & applicable rules rule usedstg
only A ∧ D,Ext C ∧ ¬ (D ∧ E)Ext / C ∧ ¬ ECnj Ext (for A ∧ D) 1
only A, D, C ∧ ¬ (D ∧ E)Ext / C ∧ ¬ ECnj Ext 2
only A, D, C, ¬ (D ∧ E) / C ∧ ¬ ECnj Cnj 3
1st A, D, C, ¬ (D ∧ E) / CQED QED 4
only A, D, C, ¬ (D ∧ E) / ¬ ERAA RAA 5
only A, D, C, ¬ (D ∧ E),CR E / ⊥ CR 6
only A, D, C, E / D ∧ ECnj Cnj 7
1st A, D, C, E / DQED QED 8
only A, D, C, E / EQED QED 9
none      
¬ (A ∧ (B ∧ C)), A ∧ D ⇒ A ∧ C
off 0 1 2 3 4 5 6 7 8 9 10 all
¬ (A ∧ (B ∧ C)) 6
A ∧ D 3, 10
├─
¬ A (4)
├─
3 Ext A (4)
3 Ext D
├─
4 Nc 2
├─
2 IP A 1
¬ C (9)
├─
├─
A 7
├─
B 8
¬ C
├─
10 Ext A
10 Ext D
¬ C, A, D ⇏ ⊥
├─
9
├─
9 IP C 8
├─
8 Cnj B ∧ C 7
├─
7 Cnj A ∧ (B ∧ C) 6
├─
6 CR 5
├─
5 IP C 1
├─
1 Cnj A ∧ C
 gap prox. arg. & applicable rules rule usedstg
only ¬ (A ∧ (B ∧ C)), A ∧ DExt / A ∧ CCnj Cnj 1
1st ¬ (A ∧ (B ∧ C)), A ∧ DExt / AIP IP 2
1st ¬ (A ∧ (B ∧ C)),CR A ∧ D,Ext ¬ A / ⊥ Ext 3
1st ¬ (A ∧ (B ∧ C)), A, D, ¬ A / ⊥Nc Nc 4
only ¬ (A ∧ (B ∧ C)), A ∧ DExt / CIP IP 5
only ¬ (A ∧ (B ∧ C)),CR A ∧ D,Ext ¬ C / ⊥ CR 6
only A ∧ D,Ext ¬ C / A ∧ (B ∧ C)Cnj Cnj 7
2nd A ∧ D,Ext ¬ C / B ∧ CCnj Cnj 8
3rd A ∧ D,Ext ¬ C / CIP IP 9
3rd A ∧ D,Ext ¬ C / ⊥ Ext 10
3rd A, D, ¬ C / ⊥ dead end