
8.5. Proofs by choice and proofs of existence

8.5.0. Overview

Although formal proofs for disjunction involve some new ideas,
these are mainly recombinations of ideas used for disjunction and
universals.

8.5.1. The role of existentials in entailment  
The role of existentials in entailment is analogous to the role of
disjunctions in much the way the role of universals is analogous
to that of conjunctions.

8.5.2. Derivations for existentials  
Derivation rules for existentials then also exhibit an analogy with
those for disjunction, with two basic rules supplemented by an
often useful attachment rule.

8.5.3. First-order logic  
This completes our account of entailment for first-order logic;
higher-order logics concern quantifiers the generalize from
predicates rather than individual terms but no complete system
of derivations can be given for them.
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8.5.1. The role of existentials in entailment

As has been the case elsewhere in this chapter, we will be able to
rely on our discussion of universals to simplify our discussion of
principles of entailment for existentials. The differences between
the principles governing universal and existential quantifiers will,
in most cases, be analogous to differences between the principles
for conjunction and disjunction. The laws of entailment for the
universal quantifiers were modifications of laws for conjunction,
and the rules for the existential quantifiers will be based in a
similar way on rules for disjunction. Our planning rule for
existential sentences as conclusions will take a different form from
that for disjunctions, but even it is analogous to a rule that could
have been used for that connective.

These analogies derive from the truth conditions for the
unrestricted existential, which follow the conditions for disjunction
in precisely the way the conditions for the universal follow those
for conjunction. A sentence ∃x θx is true in a structure if and only
if it has at least one true instance in a language expanded by the
range R of that structure. In other words, an existential claim
behaves like a disjunction of its instances when these instances are
taken in a language that incorporates a term for each reference
value. However, as was the case with the universal, the set of
instances is not be the same for all structures, so we cannot employ
any definite information about what the instances of an existential
sentence are when stating general laws of entailment.

First, we will look at the role of an unrestricted existential as a
premise. A disjunctive premise may be used to draw a conclusion
by way of a proof by cases. In such a proof, we suppose in turn that
each of the disjuncts is true and argue for the conclusion in each
case. A comparable way of arguing from an existential would be to
establish many arguments, each one considering an instance of the
existential as one case. Since we cannot associate the existential
with any definite set of instances, we cannot consider each of these
arguments individually, so we must use adapt a device from our
treatment of the universal: we need to set out the indefinitely many
arguments by offering a general pattern. That is, to use an
existential premise to draw a conclusion, we draw the conclusion
from one instance of the existential in a way that sets a pattern for
all other instances.



all other instances.

This sort of argument may be called a proof by choice. To see
how proofs by choice work, consider the two arguments below.
Anyone who worked late got

overtime

If anything broke down, Tom

worked late

Something broke down

Tom got overtime

Anyone who worked late got

overtime

If anything broke down, Tom

worked late

X broke down

Tom got overtime

The validity of the argument on the left can be traced to the
validity of the one on the right. In the latter, we use the premise X
broke down in place of the existential Something broke down, so
we argue for the conclusion from an instance of the existential.

Of course, being able to draw a conclusion when using an
instance of an existential does not, by itself, insure that we can
draw the same conclusion using the existential. For example, given
appropriate premises we can conclude Larry will be happy from
Larry will win a lottery; but this does not insure that we can
conclude Larry will be happy from Someone will win a lottery.
So, to base the validity of the argument on the left on the validity of
the one on the right, we will need to insure that whatever we can
conclude using the instance X broke down also could be concluded
using any other instance. That is, we need to insure that the
argument on the right has a sort of generality. If we were
employing proof by choice in a formal proof, we might signal this
generality by saying, “Let X be anything that broke down.” This
would declare our intention to begin with the choice of an instance
but without employing any special information about instance we
have chosen.

It should be clear that there is some kinship between proofs by
choice and the general arguments we have used to establish
universal conclusions. Both the reasons for and the nature of this
kinship can be brought out in another way by considering a second
pair of arguments. In these arguments, the key premises of the
earlier pair have been absorbed in the conclusion:

Anyone who worked late got

overtime

If anything broke down, Tom

worked late

Something broke down → Tom got

overtime

Anyone who worked late got

overtime

If anything broke down, Tom

worked late

∀x (x broke down → Tom got

overtime)

The validity of the argument on the left is tied to the validity of
the left-hand argument of the earlier pair by the law for the
conditional as a conclusion, and the validity of the right-hand
arguments in both pairs are tied by that law and the law for the
universal as a conclusion.

Consequently, the relation between the earlier two arguments
can be understood by way of the relation between the new pair.
And the new pair of arguments are clearly tied since their
conclusions are equivalent by one of the confinement principles
discussed in 8.1.4 . The different forms taken by these conclusions
show us that the inference ticket to Tom got overtime  from
Something broke down, can be based on a sort of general
inference ticket to Tom got overtime  from the instance X broke
down. That is, to move from Something broke down to Tom got
overtime  we need a way of passing from X broke down to Tom got
overtime  that can be generalized to work for any instance.

Recalling the test we used for the generality of arguments in the
case of the universal quantifiers, we can expect our analysis of the
role of an existential as a premise to make reference to a term that
is parametric in an appropriate sense. We will want a term that
has no special connection to any elements of the argument—to any
of its premises, its conclusion, or the predicate that the existential
premise claims to be exemplified. So suppose the term a is
unanalyzed term and does not appear in the set Γ, the sentence φ,
or the existential ∃x θx, and consider the two arguments

Γ, ∃x θx / φ 
Γ, θa / φ.

We can argue that each is valid if and only if the other is if we
can show that each is divided by a structure if and only if the other
is. If a structure S divides the premises and conclusion of the first,
it will assign θ a non-empty extension, and we can form a structure
S′ that divides the second argument by assigning a value in this
extension to the term a. We can assign this extension to the term a



extension to the term a. We can assign this extension to the term a
without disturbing the interpretation of other vocabulary since, as
a parameter, the term a stands apart from this vocabulary. So S′
will give θ the same extension as S does, and it will make θa true
without changing the truth values of φ and the members of Γ. On
the other hand, any structure dividing the second argument will
give θ a non-empty extension (because the value of the term a will
be in it) so this structure will make ∃x θx true and also divide the
first argument. Thus we will have a structure dividing one
argument if and only if we have a structure dividing the other, and
each argument is valid if and only if the other is. This gives us our
law for the unrestricted existential as a premise: if a is an
unanalyzed term that does not appear in Γ, φ, or ∃x θx, then Γ, ∃x 
θx ⇒ φ if and only if Γ, θa ⇒ φ.

We turn next to the role of existentials as conclusions. First,
recall our account of the role of disjunction as conclusion: Γ  ⇒ φ ∨ 
ψ if and only if Γ, φ ⇒ ψ. We could have avoided the asymmetric
treatment of the two components if we had resorted to an even
heavier use of negation; applying the idea behind IP to the right
side of the law, we get this: Γ  ⇒ φ ∨ ψ if and only if Γ, φ, ψ ⇒ ⊥.
That is, a disjunction is a valid conclusion if and only if we can
reduce to absurdity the supposition that its components are both
false. We are often able to avoid this use of reductio arguments in
the case of disjunction, but it would be awkward to do so in the
case of the existential.

A strict analogue for the existential of this rule for disjunction
would be to say that we can conclude an existential ∃x θx from
premises Γ  if and only if we can reduce to absurdity the result of
adding denials of all the instances of ∃x θx to Γ. But there is no
definite set of instances, so we cannot take this approach literally.
We had a related problem in dealing with the universal as a
premise, for the analogy with conjunction suggested that a
universal premise might be replaced by the set of all its instances.
And the problem there provides a solution here: we can say that an
existential ∃x θx follows from premises Γ  if and only if we can
reduce to absurdity the result of adding ∀x θx to Γ. This will be our
law for the existential as a conclusion.

Γ  ⇒ ∃x θx if and only if Γ, ∀x θx ⇒ ⊥

In it, we do not explain the role of the existential as a conclusion
directly, but instead make a connection with the role of the
universal as a premise. Like the awkwardness in handling
disjunction, this can be traced to the fact that we maintain at most
one goal. (A law for ∃ that makes no reference to ∀ is easier to state
for relative exhaustiveness; see appendix B  for the form it would
take.)

This principle for the existential is closely related to the
equivalence obversion, for (choosing one of the cases of obversion
covered by the bar notation) we have

¬ ∀x θx ⇔ ∃x θx.

This equivalence says that an existential is equivalent to the
denial of a corresponding negative generalization. And the law for
existential conclusions says that we can conclude a claim of
exemplification if we can reduce a negative generalization to
absurdity—that is, if we can do what would be needed to establish
the denial of one.

This way of drawing an existential conclusion is called a non-
constructive proof. It enables us to establish a claim of
exemplification without ever describing a particular example. (The
use of the term construction  here can be traced to geometry,
where claims of exemplification are typically established by a
geometric construction of the figure that is claimed to exist.) Non-
constructive proofs of exemplification have been common in
modern mathematics but have also been controversial. The doubts
about them have not usually been doubts about their validity
(though Brouwer, who was mentioned in 3.1.3 , could be said to
have doubted that). Instead these doubts have concerned the
respect accorded such proofs, with some mathematicians feeling
that the methods used in them render them undeserving of the
respect that might be given to them due to the importance of their
conclusions. The feature of non-constructive proofs that lies
behind these doubts is a weakness that is granted even by those
who accept such proofs happily: because they do not produce an
example, they may provide little insight into the reasons why a
claim of exemplification is true.

The deepest concerns about non-constructive proof are focused
on arguments about abstract and, especially, infinite structures,
and even Brouwer thought that non-constructive proofs were valid



and even Brouwer thought that non-constructive proofs were valid
for reasoning about ordinary claims about the world of sense
experience. Still, the indirection and uninformativeness of non-
constructive arguments can be felt with ordinary reasoning and is
often unnecessary, so it is worthwhile considering the alternative.
A constructive proof  of a claim of exemplification establishes
the claim by first producing an example of the sort that is claimed
to exist. The move from example to claim of exemplification
appears formally as a step from an instance of an existential to the
existential itself, and it is neatly captured in a principle of
entailment commonly known as existential generalization: θτ 
⇒ ∃x θx for any term τ.

The conclusion of this entailment is not a generalization in the
sense in which we have been using the term. But it may be said of
someone who is making heavy use of words like something and
someone that he is “speaking in generalities” and is not being
specific. The principle of existential generalization is a license to
move from a specific claim to a generality of an existential sort. We
cannot rely on this principle alone—the issue of non-constructive
arguments would never have arisen if we could—but it does
provide a useful supplement in the way the principle of weakening
supplements the law for disjunction as a conclusion. And, like
weakening, we will count existential generalization as an
attachment principle. (What is attached? In form, we could say it is
the existential quantifier; in what is said, it is the other instances of
the conclusion, the other ways in which it could be true.)

This completes our suite of principles for the unrestricted
existential. Collected together, they are as follows:
Law for the unrestricted existential as a premise. For any
unanalyzed term a appearing in neither Γ, Σ, nor ∃x θx, we have:

Γ,∃x θx ⇒ Σ if and only if Γ,θa ⇒ Σ.
Law for the unrestricted existential as a conclusion.

Γ  ⇒ ∃x θx if and only if Γ, ∀x θx ⇒ ⊥.
Law of existential generalization.

θτ ⇒ ∃x θx for any term τ.
The first of these is the principle underlying proofs by choice (in

which we choose an example a of the sort claimed by the
existential), the second underlies non-constructive proofs, and the
third underlies constructive proofs.

third underlies constructive proofs.

There is a corresponding set of principles for the restricted
existential. These can be reached by way of restatements of a
restricted existential in unrestricted form and thus by way of
principles for conjunction. The process is more straightforward
than in the case of the restricted universal, so we will only consider
the results, which are the following:
Law for the restricted existential as a premise. For any
unanalyzed term a appearing in neither Γ, φ, nor (∃x: ρx) θx, we
have:

Γ, (∃x: ρx) θx ⇒ Σ if and only if Γ, ρa, θa ⇒ Σ.
Law for the restricted existential as a conclusion.

Γ  ⇒ (∃x: ρx) θx if and only if Γ, (∀x: ρx) θx ⇒ ⊥.
Law of restricted existential generalization.

ρτ, θτ ⇒ (∃x: ρx) θx for any term τ.
Again these provide the basis for proofs by choice and for both

non-constructive and constructive proofs of exemplification. The
last says that we can establish a claim of existence if we can show
of the value of τ  both that it is in the domain of the existential and
that it has the attribute. The first law says we can draw a
conclusion from an existential if we conclude it from arbitrary
choice of a value that is in the domain and has the attribute.
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8.5.2. Derivations for existentials

To implement the laws we have just been considering, we will again use ideas introduced in
connection with universals. In particular, a proof by choice will be marked by a veil of
ignorance flagged by a parameter, and it will have a supposition that sets out the example
chosen. However, the complications that appeared with the rules for exploiting universals
may be left with those rules, since we manage planning for an existential conclusion simply by
passing the buck on to universals.

The two basic rules for the unrestricted existential are Proof by Choice (PCh) and Non-
constructive Proof (NcP):

│…
│∃x θx
│…
││…
││
││
││
││
││
││
│├─
││φ
│...

│…
│∃x θx n
│…
││…
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─
││φ

n PCh│...

Fig. 8.5.2-1. Developing a derivation at stage n by exploiting an unrestricted existential; the
parameter a is new to the derivation.

│…
││…
││
││
││
││
││
│├─
││∃x θx
│...

│…
││…
│││∀x θx
││├─
│││
││├─
│││⊥ n
│├─
││∃x θx

n NcP│...

Fig. 8.5.2-2. Developing a derivation at stage n by planning for an unrestricted existential.

Notice that the existential is rendered inactive in the first rule. Also remember that the
parameter that is used in this rule should be new to the derivation; that will insure that the
supposition that is introduced represents the only information about this parameter that may
be used in closing the gap. The second rule will often be a very indirect way of reaching an
existential goal, and the following attachment rule, Existential Generalization (EG), will
often simplify derivations considerably:

│…
│θτ
│…
││…
││
││
│├─
││φ
│...

│…
│θτ n
│…
││…

n EG││∃x θx X
││
│├─
││φ
│...

Fig. 8.5.2-3. Developing a derivation at stage n by adding an unrestricted existential that has an instance
among the active resources.

Although this is an attachment rule and therefore not part of the basic system, you should
be as ready to use it as the two above.

Here are two derivations that illustrate these rules. Each shows that a claim of uniformly
general exemplification implies the corresponding claim of general exemplification without a

general exemplification implies the corresponding claim of general exemplification without a
claim of uniformity. The derivation on the left uses a non-constructive proof of the existential
that is set as the goal in stage 2 while the one on the right uses EG to give a constructive proof
of this existential. Both derivations begin by exploiting the existential premise, but derivations
for the same entailment could have been developed by planning for the initial conclusion first;
and, when NcP is used, it would be possible to postpone the exploitation of the initial premise
until after NcP is applied. (It would be a good exercise at this point to write down these other
derivations for this argument.)

│∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:4
│├─
││ⓑ
││││∀x ¬ Rxb a:5
│││├─

4 UI ││││Rab (6)
5 UI ││││¬ Rab (6)

││││●
│││├─

6 Nc ││││⊥ 3
││├─

3 NcP│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh│∀y ∃x Rxy

 │∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:3
│├─
││ⓑ

3 UI │││Rab (4)
4 EG │││∃x Rxb X,(5)

│││●
││├─

5 QED│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh │∀y ∃x Rxy

The savings here in length and complexity by using EG are typical of cases where it can be
used. Since it can be used only when an existential is entailed by the resources, it will often be
unavailable in derivations that fail, and NcP is required also in some derivations for valid
arguments. A derivation showing the obversion principle ¬ ∀x Fx ⇒ ∃x ¬ Fx is simple
example of this; EG cannot be applied because the premise does not entail any sentence ¬ Fτ
from which we could generalize.

│¬ ∀x Fx (2)
├─
││∀x Fx (2)
││●
│├─

2 Nc ││⊥ 1
├─

1 NcP│∃x ¬ Fx

The rules for restricted quantifiers take on the same general forms. The two basic rules are
Proof by Restricted Choice (PRCh) and Restricted Non-constructive Proof (RNcP):



│…
│(∃x: ρx) θx
│…
││…
││
││
││
││
││
││
││
│├─
││φ
│...

│…
│(∃x: ρx) θx n
│…
││…
││ⓐ
│││ρa
│││θa
││├─
│││
││├─
│││φ n
│├─
││φ

n PRCh│...

Fig. 8.5.2-4. Developing a derivation at stage n by exploiting a restricted existential; the parameter a
is new to the derivation.

│…
││…
││
││
││
││
││
│├─
││(∃x: ρx) θx
│...

│…
││…
│││(∀x: ρx) θx
││├─
│││
││├─
│││⊥ n
│├─

n RNcP││(∃x: ρx) θx
│...

Fig. 8.5.2-5. Developing a derivation at stage n by planning for a restricted existential.

The exploitation rule introduces two suppositions; they stipulate of the example chosen not
only that it have the attribute of the claim of exemplification but also that it be in the domain
of this claim. An analogous move in an English proof would be to say, “Let r be a real
number, and suppose it is between 0 and 1” as a way of exploiting the fact Some real number
is between 0 and 1.

The analogue of EG for restricted existentials is the rule Restricted Existential
Generalization (REG):

│…
│ρτ
│…
│θτ
│…
││…
││
││
│├─
││φ
│...

│…
│ρτ
│…
│θτ
│…
││…

n REG││(∃x: ρx) θx X
││
│├─
││φ
│...

Fig. 8.5.2-6. Developing a derivation at stage n by adding a restricted existential whose domain and
attribute predicates are found among the active resources applying to the same term.

As an example of REG, let us construct a derivation to show that Every horse is a mammal
implies Any head of a horse is a head of a mammal (an entailment mentioned in 7.1.1  as
being beyond the scope of Aristotle’s syllogistic logic).

│(∀x: Hx) Mx b:3
├─
│ⓐ
││(∃y:Hy) Day 2
│├─
││ⓑ
│││Hb (3)
│││Dab 4
││├─

3 SB │││Mb 4
4 REG │││(∃z:Mz) Daz X,(5)

│││●
││├─

5 QED │││(∃z:Mz) Daz 2
│├─

2 PRCh││(∃z:Mz) Daz 1
├─

1 RUG │(∀x: (∃y: Hy) Dxy) (∃z: Mz) Dxz

[H: λx (x is a horse); M: λx (x is a mammal); D: λxy (x is a head of y)]

Existential generalization is used at stage 4 and saves us having to enter (∀z: Mz) ¬ Daz as
a supposition to be reduced to absurdity. That is a small simplification in this case; but REG
can provide a more substantial simplification when it is used to provide an auxiliary resource
for a detachment rule, as in the following derivation of an alternative analysis of Any head of
a horse is a head of a mammal that treats a horse  as marking a generalization with wide
scope.

│(∀x: (∃y: Hy) Dxy) (∃z: Mz) Dxz b:4
├─
│ⓐ
││Ha (3)
│├─
││ⓑ
│││Dba (3)
││├─

3 REG│││(∃y: Hy) Dby X,(4)
4 SB │││(∃z: Mz) Dbz (5)

│││●
││├─

5 QED│││(∃z: Mz) Dbz 2
│├─

2 RUG││(∀x: Dxa) (∃z: Mz) Dxz 1
├─

1 RUG│(∀y: Hy) (∀x: Dxy) (∃z: Mz) Dxz

Here the alternative to REG is a use of MCR to exploit the premise for b after planning for
(∃z: Mz) Dxz by NcP, and each of the two gaps opened by MCR would require some work to
complete. Here is what a completed derivation along those lines would look like:



 

│(∀x: (∃y: Hy) Dxy) (∃z: Mz) Dxz b:4
├─
│ⓐ
││Ha (6)
│├─
││ⓑ
│││Dba (7)
││├─
││││(∀z: Mz) ¬ Dbz c:9
│││├─
││││││(∀y: Hy) ¬ Dby a:6
│││││├─

6 SB ││││││¬ Dba (7)
││││││●
│││││├─

7 Nc ││││││⊥ 5
││││├─

5 RNcP│││││(∃y: Hy) Dby 4
││││
│││││(∃z: Mz) Dbz 8
││││├─
│││││ⓒ
││││││Mc
││││││Dbc (10)
│││││├─

9 SB ││││││¬ Dbc (10)
││││││●
│││││├─

10 Nc ││││││⊥ 8
││││├─

8 PRCh│││││⊥ 4
│││├─

4 MCR ││││⊥ 3
││├─

3 RNcP│││(∃z: Mz) Dbz 2
│├─

2 RUG ││(∀x: Dxa) (∃z: Mz) Dxz 1
├─

1 RUG │(∀y: Hy) (∀x: Dxy) (∃z: Mz) Dxz

Although this is not a very natural argument for the entailment, it provides a good
illustration of the basic rules for both restricted universals and restricted existentials; and this
sort of approach could be unavoidable in the case of an argument that was not valid.

As was the case with universals, it is possible to capture the logical properties of restricted
existentials by way of their restatement using unrestricted quantifiers. The rules for doing this
are Restricted Existential Premise (REP) and Restricted Existential Conclusion
(REC). The latter takes two forms since it needs to be applied to resources as well as goals in
order to use EG in place of REG. The second form of REC is counted as an attachment rule
since it and REP could not both be counted as progressive.

│…
│(∃x: ρx) θx
│…
││…
││
││
│├─
││φ
│…

│…
│(∃x: ρx) θx n
│…
││…

n REP││∃x (ρx ∧ θx)
││
│├─
││φ
│…

Fig. 8.5.2-7. Developing a derivation at stage n by restating a restricted existential resource.

│…
││…
││
││
││
││
│├─
││(∃x: ρx) θx
│…

│…
││…
│││
│││
││├─
│││∃x (ρx ∧ θx) n
│├─

n REC││(∃x: ρx) θx
│…

  

│…
│∃x (ρx ∧ θx)
│…
││…
││
││
│├─
││φ
│…

│…
│∃x (ρx ∧ θx) n
│…
││…

n REC││(∃x: ρx) θx X
││
│├─
││φ
│…

Fig. 8.5.2-8. Developing a derivation at stage n by restating a restricted existential goal or restating a
resource as a restricted existential.

Each of PRCh, RNcP, and REG could be replaced by a use of one of these along with other
rules—PCh followed by Ext, NcP followed by uses of UI together with MPT or CR, and EG

rules—PCh followed by Ext, NcP followed by uses of UI together with MPT or CR, and EG
preceded by Adj, respectively.

Arguments for the soundness and completeness of this system carry over from 7.7  without
any new wrinkles. We solved all the key problems there, and a number are not even repeated
here.

However, we cannot avoid the consequences of the failure of decisiveness. To find finite
counterexamples whenever they exist, we would need to modify the rules for exploiting
existential resources in the way the rule for planning for a universal goal was modified in
7.8.1 . Without such rules, we will not reach dead-end open gap in any derivation whose

resources contain a weak, though unrestricted, claim of general exemplification (e.g., the
sentence of the form ∀x ∃y Rxy). We will label the modified rules Supplemented Proof by
Choice (PCh+) and Supplemented Proof by Restricted Choice (PRCh+).

│…
│∃x θx
│…
││…
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│...

│…
│∃x θx n
│…
││…
│││θσ
││├─
│││
│││
││├─
│││φ n
││
││…
││
│││θτ
││├─
│││
│││
││├─
│││φ n
││
││ⓐ
│││θa
││├─
│││
│││
││├─
│││φ n
│├─

n PCh+││φ
│...

  

│…
│(∃x: ρx) θx
│…
││…
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│...

│…
│(∃x: ρx) θx n
│…
││…
│││ρσ
│││θσ
││├─
│││
││├─
│││φ n
││
││…
││
│││ρτ
│││θτ
││├─
│││
││├─
│││φ n
││
││ⓐ
│││ρa
│││θa
││├─
│││
││├─
│││φ n
│├─

n PRCh+││φ
│...

Fig. 8.5.2-9. Developing a derivation at stage n by exploiting an unrestricted or a restricted
existential; the parameter a is new to the derivation and the terms σ, ..., τ include at least one from

each current alias set for the gap

The following derivation illustrates these rules. It shows that a claim of general
exemplification need not imply uniformity by finding a counterexample to the entailment ∀x 
∃y Rxy ⇒ ∃y ∀x Rxy.



│∀x ∃y Rxy a:2, c:9
├─
││∀y ¬ ∀x Rxy a:3, c:10
│├─

2 UI ││∃y Ray 5
3 UI ││¬ ∀x Rxa 4

││
││││Raa (7)
│││├─
│││││●
││││├─

7 QED │││││Raa 6
││││
││││ⓒ
││││││¬ Rca
│││││├─

9 UI ││││││∃y Rcy 12
10 UI ││││││¬ ∀x Rxc 11

││││││
││││││││Rca
│││││││├─
││││││││(unfinished but will close)
│││││││├─
││││││││∀x Rxc 12
│││││││
││││││││Rcc
│││││││├─
││││││││││¬ Rac
│││││││││├─
││││││││││○ Raa, ¬ Rca, Rcc, ¬ Rac ⇏ ⊥
│││││││││├─
││││││││││⊥ 14
││││││││├─

14 IP │││││││││Rac 13
││││││││
│││││││││● 15
││││││││├─

15 QED │││││││││Rcc 13
││││││││
││││││││ⓔ
│││││││││(unfinished)
││││││││├─
│││││││││Rec 13
│││││││├─

13 UG+ ││││││││∀x Rxc 12
│││││││
│││││││ⓓ
││││││││Rcd
│││││││├─
││││││││(unfinished)
│││││││├─
││││││││∀x Rxc 12
││││││├─

12 PCh+│││││││∀x Rxc 11
│││││├─

11 CR ││││││⊥ 8
││││├─

8 IP │││││Rca 6
│││├─

6 UG+ ││││∀x Rxa 5
│││
│││ⓑ
││││Rab
│││├─
││││(unfinished)
│││├─
││││∀x Rxa 5
││├─

5 PCh+ │││∀x Rxa 4
│├─

4 CR ││⊥ 1
├─

1 NcP │∃y ∀x Rxy

 

 

Although this is long and cumbersome, the development of the dead-end gap goes through
precisely the steps you would need to go through in your own thinking to arrive the same
counterexample:

The premise says that everything stands in relation R to something or other. So let’s
suppose we have an object a such that Raa. But we if we stop there, everything will
stand in R to a and the conclusion will be true. So let’s suppose we have a second object c
that doesn’t stand in R to a. Now c must stand in R to something if the premise is to be
true and it can’t stand in R to a, so let’s suppose it stands in R to itself. Now, to make the
conclusion false we must be sure that not everything stands in R to c, so we better
suppose that a does not. So we’ve described a possible world containing objects a and c
where Raa, ¬ Rca, Rcc, ¬ Rac; and that’s enough to make the premise true and the
conclusion false.

conclusion false.

Developing the unfinished gaps would lead to other counterexamples. For example, the last
open gap in this derivation explores the possibility of making the premise true by having a
stand in R to another object b and it would, among other things, lead us to a counterexample
in which each of a and b is stands in R to the other but neither stands in R to itself.
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8.5.3. First-order logic

Although we will go on to give some consideration to derivations
for the description operator, our system of derivations is now
essentially complete. It is intended to capture entailments that
derive from truth-functional logic and the logical properties of
identity, predication, and the quantifiers. This range of logical
forms is the concern of first-order logic. (Usage varies a little,
and sometimes identity is not included; in that case, our subject is 
“first-order logic with identity.”) The qualification first-order
derives from the fact that we analyze quantification only over
individuals and not over properties and relations. Thus we cannot
analyze the sentence Objects a and b are identical if and only if
every property of one is a property of the other and we cannot ask
whether this sentence is a tautology. The representation of such
higher-order quantification symbolically would present few new
problems. We would need bindable variables that functioned
syntactically as predicates, notation for complex predicates of
predicates (with our quantifiers serving as simple predicates of
predicates), and quantifiers applying to such predicates of
predicates. This would give us second-order logic. To go
further, we might introduce quantification for predicates of
predicates—and so on. If this process is continued to all (finite)
orders, we end up with what is known as higher-order logic  or
(simple) type theory.

While higher-order logic introduces nothing really new in its
syntax, the account of entailment for it is a completely different
game, and the new problems appear already with second-order
logic. In particular, there can be no sound system for settling
questions of validity for second-order logic that is even complete,
much less decisive. Indeed, a full understanding of validity for
second-order logic would provide a full understanding of all truths
concerning positive integers. But it was shown by Kurt Gödel in the
early 1930s that these truths cannot be captured by anything like a
system of derivations. (This is the result mentioned in 7.7.1  as the
basis on which Church showed that there could be no system of
derivations for first-order logic that was decisive as well as sound
and complete.)

So there is a reason for distinguishing the theory of first-order
quantification, from higher-order logic. Frege’s work did not make

quantification, from higher-order logic. Frege’s work did not make
this distinction. The subject matter he addressed included the
whole of what is now known as type theory because he was
interested in connections with arithmetic, whose truths he wished
to explain as logical tautologies. Although he provided what was
essentially a complete account of validity for first-order logic, his
treatment of other areas introduced inconsistencies. These were

repaired shortly after (in the first decade of the 20th century) by
Bertrand Russell, whose work led to the current conception of type
theory. First-order logic came to be distinguished within type
theory and was permanently set in its present form by Gödel when
he showed that Frege’s initial ideas provided a complete account of
validity for this part of logic.

Glen Helman  25 Aug 2005



8.5.s. Summary

Existentials bear the kind of analogy to disjunctions that
universals bear to conjunctions, and their role in entailment
reflects this. Our principle for the unrestricted existential as
premise  says that the existential will support a proof by choice .
This is a sort of proof by cases in which cases for each instance of
the existential are handled not one by one but by using a
parameter  to consider a single instance that sets the pattern for

all the rest. The pattern-setting instance can thus be thought of as
an example, chosen in ignorance of its specific identity, of the sort
that the existential claims to exist. There are two approaches to
establishing an existential conclusion. Our general principle for the
unrestricted existential as a conclusion  uses the idea of non-

constructive proof , in which a claim of exemplification is based on
the reduction to absurdity of a corresponding negative universal.
In a constructive proof , an existential conclusion is based on the
proof of an instance, which thus “constructs” an example of the
sort the existential claims to exist. Constructive proofs are
supported by the attachment principle of existential
generalization . There are analogous principles for the restricted
existential as a premise  and as a conclusion  and of restricted
existential generalization .

The laws for existential premises and conclusions are
implemented in exploitation and planning rules using some ideas
from the rules for universals. The principles for unrestricted
existentials are implemented in the rules Proof by Choice (PCh) ,
Non-constructive Proof (NcP) , and Existential Generalization

(EG) ; and, for the restricted existential, we have analogous rules
of Proof by Restricted Choice (PRCh) , Restricted Non-
constructive Proof (RNcP) , and Restricted Existential
Generalization (REG) . An alternative approach to the deductive
properties of restricted existentials uses rules Restricted
Existential Premise (REP)  and Restricted Existential Conclusion
(REC)  to restate them using unrestricted quantifiers or conclude
them from such restatements. Also as was the case with the
universal quantifier, to uncover counterexamples to invalid
arguments using finite ranges (when such counterexamples exist),
we need supplemented forms of proof by choice and restricted
choice, PCh+  and PRCh+ .

choice, PCh+  and PRCh+ .

The arguments for soundness and completeness also contain no
new twists. The system we have now completed accounts for the
entailments of what is known as first-order logic . That is, we
consider quantification only over individuals and not over
properties, properties of those properties, or any other second-
order  or higher-order  entities. Although higher-order logic, or
type theory , has attracted interest since Frege, it cannot be given

a complete system of derivations.
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8.5.x. Exercise questions

1. Use the system of derivations to establish each of the following:

a. ∃x Fx, ∀x (Fx → Gx) ⇒ ∃x Gx

b. (∃x: Fx) Gx, (∀x: Gx) Hx ⇒ (∃x: Fx) Hx

c. ∀x (Fx → Ga) ⇔ ∃x Fx → Ga

d. Fa ⇔ (∃x: x = a) Fx

e. (∃x: Fx) ∀y Rxy ⇒ ∀x (∃y: Fy) Ryx

f. (∃x: Gx) Fx, ¬ Fa ⇒ (∃x: ¬ x = a) Gx

g. ∀x (Fx → Ga),∀x (Ga → Fx), ∃x Fx ⇒ ∀x Fx

h. Everyone loves everyone who loves anyone, Someone loves
someone  ⇒ Everyone loves everyone

i. Something is such that nothing other than it is done ⇔ At most
one thing is done

2. Use derivations to check each of the claims below; if a derivation
indicates that a claim fails, describe a structure that divides an open
gap. You need not worry about infinite derivations.

a. ∃x Fx, ∃x Gx ⇒ ∃x (Fx ∧ Gx)

b. (∃x: Fx) Gx, (∃x: Fx) Hx, (∀x: Fx) (∀y: Fy) x = y ⇒ ∃x (Gx ∧ Hx)

3. In the following, choose one of each bracketed pair of premises and one
each bracketed pair of words or phrases in the conclusion so as to make
a valid argument; then analyze the premises and conclusion and
construct a derivation to show that the argument is valid.

a. Some road sign was colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]
[If anything was red, it was colored | If anything was colored, it

was painted]
Some [stop sign | traffic marker] was  [red | painted]

b. Someone who owns a snake was pleased
[Every cobra is a snake | Every snake is a reptile]
Someone who owns a [cobra | reptile] was pleased
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8.5.xa. Exercise answers

1. Some of the derivations below are given in two forms, one that does not
use EG and REG and another that does. It is also possible to use the rules
REP and REC along with the rules for unrestricted existentials. Such
answers are not shown but the they can constructed from the answers
that are given by using the substitutions of rules shown in the following
table:

rule  alternative approach using REP and REC

PRCh  REP, PCh, Ext

RNcP  REC, NcP (with later uses SB, SC, and MCR 
replaced by UI and either MPT or CR )

REG  Adj, EG, REC

 a. │∃x Fx 1
│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga

│││∀x ¬ Gx a:5
││├─

5 UI │││¬ Ga (6)
│││●
││├─

6 Nc │││⊥
│├─

4 NcP ││∃x Gx 1
├─

1 PCh │∃x Gx

 │∃x Fx 1
│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga (4)
4 EG ││∃x Gx X, (5)

││●
│├─

5 QED││∃x Gx 1
├─

1 PCh │∃x Gx

 b. │(∃x: Fx) Gx 1
│(∀x: Gx) Hx a:2
├─
│ⓐ
││Fa (4)
││Ga (2)
│├─

2 SB ││Ha (5)
││
│││(∀x: Fx) ¬ Hx a:4
││├─

4 SB │││¬ Ha (5)
│││●
││├─

5 Nc │││⊥ 3
│├─

3 RNcP││(∃x: Fx) Hx 1
├─

1 PRCh│(∃x: Fx) Hx

 │(∃x: Fx) Gx 1
│(∀x: Gx) Hx a:2
├─
│ⓐ
││Fa (3)
││Ga (2)
│├─

2 SB ││Ha (3)
3 REG ││(∃x: Fx) Hx X, (4)

││●
│├─

4 QED ││(∃x: Fx) Hx 1
├─

1 PRCh│(∃x: Fx) Hx



 c. │∀x (Fx → Ga) b:3
├─
││∃x Fx 2
│├─
││ⓑ
│││Fb (4)
││├─

3 UI │││Fb → Ga 4
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 PCh ││Ga 1
├─

1 CP │∃x Fx → Ga

  │∃x Fx → Ga 4
├─
│ⓑ
│││Fb (8)
││├─
││││¬ Ga (4)
│││├─

4 MTT││││¬ ∃x Fx 5
││││
││││││∀x ¬ Fx b:7
│││││├─

7 UI ││││││¬ Fb (8)
││││││●
│││││├─

8 Nc ││││││⊥ 6
││││├─

6 NcP │││││∃x Fx 5
│││├─

5 CR ││││⊥ 3
││├─

3 IP │││Ga 2
│├─

2 CP ││Fb→Ga 1
├─

1 UG │∀x (Fx → Ga)

 │∃x Fx → Ga 4
├─
│ⓑ
│││Fb (3)
││├─

3 EG │││∃x Fx X, (4)
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 CP ││Fb → Ga 1
├─

1 UG │∀x (Fx → Ga)

 d. │Fa (2)
├─
││(∀x: x = a) ¬ Fx a:2
│├─

2 SC ││¬ a = a (3)
││●
│├─

3 DC ││⊥ 1
├─

1 RNcP│(∃x: x = a) Fx

 │Fa (2)
├─

1 EC │a = a (2)
2 REG│(∃x: x = a) Fx (3)

│●
├─

3 QED│(∃x: x = a) Fx

  │(∃x: x = a) Fx 1
├─
│ⓑ
││b = a a—b
││Fb (2)
││●
│├─

2 QED=││Fa 1
├─

1 PRCh │Fa

 e. │(∃x: Fx) ∀y Rxy 2
├─
│ⓐ
││ⓑ
│││Fb (4)
│││∀y Rby b:5
││├─
││││(∀y: Fy) ¬ Rya b:4
│││├─

4 SB ││││¬ Rba (6)
5 UI ││││Rba (6)

││││●
│││├─

6 Nc ││││⊥ 3
││├─

3 RNcP│││(∃y: Fy) Rya 2
│├─

2 PRCh││(∃y: Fy) Rya 1
├─

1 UG │∀x (∃y: Fy) Ryx

 │(∃x: Fx) ∀y Rxy 2
├─
│ⓐ
││ⓑ
│││Fb (4)
│││∀y Rby b:3
││├─

3 UI │││Rba (4)
4 REG │││(∃y: Fy) Rya X, (5)

│││●
││├─

5 QED │││(∃y: Fy) Rya 2
│├─

2 PRCh││(∃y: Fy) Rya 1
├─

1 UG │∀x (∃y: Fy) Ryx

 f. │(∃x: Gx) Fx 1
│¬ Fa (4)
├─
│ⓑ
││Gb (3)
││Fb (4)
│├─
│││(∀x: ¬ x = a) ¬ Gx b:3
││├─

3 SC │││b = a a—b
│││●
││├─

4 Nc= │││⊥ 2
│├─

2 RNcP││(∃x: ¬ x = a) Gx 1
├─

1 PRCh│(∃x: ¬ x = a) Gx



 g. │∀x (Fx → Ga) c:3
│∀x (Ga → Fx) b:5
│∃x Fx 2
├─
│ⓑ
││ⓒ
│││Fc (4)
││├─

3 UI │││Fc → Ga 4
4 MPP│││Ga (6)
5 UI │││Ga → Fb 6
6 MPP│││Fb (7)

│││●
││├─

7 QED│││Fb 2
│├─

2 PCh ││Fb 1
├─

1 UG │∀x Fx

 h. Everyone loves everyone who loves someone  
Someone loves someone

│(∀x: Px) (∀y: Py ∧  (∃z: Pz) Lyz) Lxy b:5, a:9
│(∃x: Px) (∃y: Py) Lxy 3
├─
│ⓐ
││Pa (9)
│├─
││ⓑ
│││Pb (5), (11)
││├─
│││ⓒ
││││Pc (7), (10)
││││(∃y: Py) Lcy 4
│││├─
││││ⓓ
│││││Pd (6)
│││││Lcd (6)
││││├─

5 SB │││││(∀y: Py ∧  (∃z: Pz) Lyz) Lby c:8
6 REG │││││(∃z: Pz) Lcz X, (7)
7 Adj │││││Pc ∧  (∃z: Pz) Lcz X, (8)
8 SB │││││Lbc (10)
9 SB │││││(∀y: Py ∧  (∃z: Pz) Lyz) Lay b:12
10 REG│││││(∃z: Pz) Lbz X, (11)
11 Adj │││││Pb ∧  (∃z: Pz) Lbz X, (12)
12 SB │││││Lab (13)

│││││●
││││├─

13 QED│││││Lab 4
│││├─

4 PRCh││││Lab 3
││├─

3 PRCh│││Lab 2
│├─

2 RUG ││(∀y: Py) Lay 1
├─

1 RUG │(∀x: Px) (∀y: Py) Lxy

Everyone loves everyone  

Note that stages 4 and 6 serve only to move us from (∃y: Py) Lcy to
(∃z: Pz) Lcz—i.e., to change a bound variable. If sentences that differ
only in the choice of a letter for a bound variable are regarded as the
same, (∃y: Py) Lcy could be used as a premise for Adj at stage 7 and

same, (∃y: Py) Lcy could be used as a premise for Adj at stage 7 and
the use of PRCh at stage 4 would not be needed.

 i. Something is such that nothing other than it is done 
[When nothing is analyzed using a negative generalization, a
derivation like that below but without stages 6 and 7 could be used.]

│∃x ¬ (∃y: ¬ y = x) Dy 2
├─
││∃x (∃y: ¬ y = x) (Dx ∧  Dy) 3
│├─
││ⓐ
│││¬ (∃y: ¬ y = a) Dy 6
││├─
│││ⓑ
││││(∃y: ¬ y = b) (Db ∧  Dy) 4
│││├─
││││ⓒ
│││││¬ c = b (10)
│││││Db ∧  Dc 5
││││├─

5 Ext │││││Db (8)
5 Ext │││││Dc (9)

│││││
│││││││(∀y: ¬ y = a) ¬ Dy b:8, c:9
││││││├─

8 SC │││││││b = a a—b, c
9 SC │││││││c = a a—b—c, (10)

│││││││●
││││││├─

10 Nc= │││││││⊥ 7
│││││├─

7 RNcP││││││(∃y: ¬ y = a) Dy 6
││││├─

6 CR │││││⊥ 4
│││├─

4 PRCh││││⊥ 3
││├─

3 PCh │││⊥ 2
│├─

2 PCh ││⊥ 1
├─

1 RAA │¬ ∃x (∃y: ¬ y = x) (Dx ∧  Dy)

At most one thing is done 

At stage 10, the conclusion ⊥ could also be justified as coming by DC
from ¬ c = b alone since c = a serves to make b and c co-aliases.

 



 
  At most one thing is done

│¬ ∃x (∃y: ¬ y = x) (Dx ∧  Dy) (9)
├─
││∀x (∃y: ¬ y = x) Dy a:2, b:4
│├─

2 UI ││(∃y: ¬ y = a) Dy 3
││ⓑ
│││¬ b = a
│││Db (6)
││├─

4 UI │││(∃y: ¬ y = b) Dy 5
│││ⓒ
││││¬ c = b (7)
││││Dc (6)
│││├─

6 Adj ││││Db ∧  Dc X, (7)
7 REG ││││(∃y: ¬ y = b) (Db ∧  Dy) X, (8)
8 EG ││││∃x (∃y: ¬ y = x) (Dx ∧  Dy) X, (9)

││││●
│││├─

9 Nc ││││⊥ 5
││├─

5 PRCh│││⊥ 3
│├─

3 PRCh││⊥ 1
├─

1 NcP │∃x ¬ (∃y: ¬ y = x) Dy

Something is such that nothing other than it is done
2. a. │∃x Fx 1

│∃x Gx 2
├─
│ⓐ
││Fa (5)
│├─
││ⓑ
│││Gb (7)
││├─
││││∀x ¬ (Fx ∧  Gx) a:4, b:6
│││├─

4 UI ││││¬ (Fa ∧  Ga) 5
5 MPT││││¬ Ga
6 UI ││││¬ (Fb ∧  Gb) 7
7 MPT││││¬ Fb

││││○ Fa,¬ Fb,¬ Ga,Gb ⇏ ⊥
│││├─
││││⊥ 3
││├─

3 NcP │││∃x (Fx ∧  Gx) 2
│├─

2 PCh ││∃x (Fx ∧  Gx) 1
├─

1 PCh │∃x (Fx ∧  Gx)

 b. │(∃x: Fx) Gx 1
│(∃x: Fx) Hx 2
│(∀x: Fx) (∀y: Fy) x = y a:3
├─
│ⓐ
││Fa
││Ga (7)
│├─
││ⓑ
│││Fb
│││Hb (8)
││├─

3 SB │││(∀y: Fy) a = y b:4
4 SB │││a = b a—b

│││
││││∀x ¬ (Gx ∧  Hx) a:6
│││├─

6 UI ││││¬ (Ga ∧  Ha) 7
7 MPT ││││¬ Ha (8)

││││●
│││├─

8 Nc= ││││⊥ 5
││├─

5 NcP │││∃x (Gx ∧  Hx) 2
│├─

2 PRCh││∃x (Gx ∧  Hx) 1
├─

1 PRCh│∃x (Gx ∧  Hx)

3. a. Some road sign was colored 
Every road sign was a traffic marker  
If anything was colored, it was painted

│(∃x: Sx) Cx 1
│(∀x: Sx) Tx a:2
│∀x (Cx → Px) a:3
├─
│ⓐ
││Sa (2)
││Ca (4)
│├─

2 SB ││Ta (5)
3 UI ││Ca → Pa 4
4 MPP ││Pa (5)
5 REG ││(∃x: Tx) Px X, (6)

││●
│├─

6 QED ││(∃x: Tx) Px 1
├─

1 PRCh│(∃x: Tx) Px

Some traffic marker was painted



 b. Someone who owns a snake was pleased 
Every snake is a reptile

│(∃x: Px ∧  (∃y: Sy) Oxy) Dx 1
│(∀x: Sx) Rx b:4
├─
│ⓐ
││Pa ∧  (∃y: Sy) Oay 2
││Da (7)
│├─

2 Ext ││Pa (6)
2 Ext ││(∃y: Sy) Oay 3

││ⓑ
│││Sb (4)
│││Oab (5)
││├─

4 SB │││Rb (5)
5 REG │││(∃y: Ry) Oay X, (6)
6 Adj │││Pa ∧  (∃y: Ry) Oay X, (7)
7 REG │││(∃x: Px ∧  (∃y: Ry) Oxy) Dx X, (8)

│││●
││├─

8 QED │││(∃x: Px ∧  (∃y: Ry) Oxy) Dx 3
│├─

3 PRCh││(∃x: Px ∧  (∃y: Ry) Oxy) Dx 1
├─

1 PRCh│(∃x: Px ∧  (∃y: Ry) Oxy) Dx

Someone who owns a reptile was pleased

Glen Helman  25 Aug 2005


