
6.1.s. Summary

We move beyond truth-functional logic by recognizing complete
expressions other than sentences and operations other than
connectives. Our additions are motivated by a traditional
description of grammatical subjects and predicates . The new
complete expressions are individual terms , whose function is to
name. Given this idea, we can define a predicate as an operation
that forms a sentence from one or more individual terms.

A predicate corresponds to an English sentence with blanks
that might be filled by terms. These blanks are the predicate’s
places and the operation of filling them is predication . We will

maintain something analogous to truth-functionality by requiring
that predicates be extensional . This means that all places of a
predicate must be referentially transparent (rather than
referentially opaque): when judging the truth value of a sentence

formed by the predicate, we must be able see through the terms
filling these places to what those terms refer to. Thus, just as a
connective expresses a truth function, a predicate expresses a
function that takes reference values as input and issues truth
values as output. Such a function may be called an attribute —or,
more specifically, a property if it has one place and a relation if
it has 2 or more. In symbolic notation, it takes the form σ = τ and,
in English notation, it takes the form σ is τ.

While recognizing quite a variety of non-logical vocabulary in
our analyses, we recognize only one new item of logical
vocabulary , the predicate identity . This is a 2-place predicate
that forms an equation , which is true when its component terms
have the same reference value.

Lambda abstraction provides notation for linking the places of
a predicate to blanks in an English sentence. An expression formed
using it—which will have the general form λx1 ... xn (... x1 ... xn ...)

—is an abstract (in this use, a predicate abstract); it consists of a
lambda operator applied to a parenthesized body . In English

notation, a predicate abstract takes the form the attribute of
x1... xn that ... x1 ... xn Variables in the body of an abstract are

bound to the lambda operator. Expressions that establish the
same patterns of binding using different variables are alphabetic

variants . They may be thought of as pronouns whose antecedent
is the lambda operator. An expression (such as the body of an
abstract) that has variables not bound to lambda operators, is not
a sentence in the strict sense, but it does count as a formula .
Formulas have many of the syntactic properties of sentences; in
particular, they can be built from other formulas using
connectives. And we can distinguish as atomic formulas not only
unanalyzed sentences but all formulas that are predictions.
(Indeed, unanalyzed sentences can be thought of as predications of
zero-place predicates .)

In our symbolic notation, we use lower case letters to stand for
unanalyzed individual terms, the equal sign for identity, and
capital letters to stand for non-logical predicates. Non-logical
predicates, both capital letters and predicate abstracts are written
in front of the terms they apply to (with a predicate abstract
enclosed in brackets), and = is written between the terms to which
it applies. In English notation, predications other than equations
are written as θ fits τ1, ..., ’n τn.

Glen Helman 25 Aug 2005

