6.1.4. Abstracts

When we recognize an equation, we know immediately that it is
a two-place predication; but, in other cases, identifying the places
of a predicate is one of the chief tasks in analyzing a predication. A
full analysis of a predication will identify one place in the predicate
for each individual term appearing in the predication (more
precisely, for each occurrence of an individual term satisfying the
requirement referential transparency). When giving an analysis of
an English sentence, it is natural also to regard the order of the
places of the predicate we identify as being the same as the order
in which the terms filling them appear in the English sentences.
But this way of associating places of a predicate with individual
terms in its English output is not required by the concept of a
predicate. And, even though we will not make use of the freedom
to depart from it in our analyses, we will want to allow intentional
interpretations of symbolic predications to have full freedom in
this regard.

For this reason, we need notation for predicates that will allow
us to specify an order for the places of a predicate that is different
from the order of blanks they correspond to and that will allow us
to associate a given place with more than one blank. What we will
use is an extension of the ordinary algebraic use of variables. It is a
simple idea that was used by Frege but it was first studied
extensively by the American logician Alonzo Church (1903-1995) in
the 1930s, and it is his notation for it that has become standard.
The usual form of definition for a function—for example,

fx,y) =x2+3xy+1
gives a name to the function and uses a variable or variables to
indicate the input values, with the output specified by an algebraic
formula. Such definition might be read f is the function which,
when given input x and y, yields the output x* + 3xy + 1. Church’s
notation, the notation of lambda abstraction, provides a
symbolic version of the definite description following is in the
English definition above. Using this notation, the symbolic
definition could be written as

f=Axy (x> +3xy+1)
That is, Axy (x® + 3xy + 1) can be read as the function which,



when given input x and y, yields the output x° + 3xy + 1. The
notation of lambda abstraction thus describes a function without
introducing a name for it. This idea has been important in the
development of computer programming languages and, in that
context, the right-hand side of the second equation taken by itself
would now often be described as an “anonymous function”; so,
when it is expressed in the notation of lambda abstraction, the
defining equation specifies a function anonymously and then
assigns it the name “f.”

Since the variables x and y might appear in any order and any
number of times in the expression specifying the output, this sort
of notation provides the kind of flexibility we want in specifying
predicates. For example, we can write

Axy (y told x about y)

for a predicate that, when given the input Ann and Bill yields the
output Bill told Ann about Bill—or, more idiomatically, Bill told
Ann about himself. As another example, note that the fullest and
most natural analysis of this output sentence would instead see it
as the output of the predicate

Axyz (x told y about z)

when it is given as its input the names Bill, Ann, and Bill again
(where the second “Bill” is the same name again and not merely
the same letters; that is, it is not the name of another person).

We will refer to such an expression as an abstract and, more
specifically as a predicate abstract when its output is a
sentence. The general form of an abstract with n places is

AXq oo Xy (eoe Xq oee Xpp o2l
A-operator body

It has of two parts, a lambda operator consisting of the letter
A followed by a list of n variables and, as its body, an expression
formed drawing on these variables and other vocabulary. The
variables need not actually appear in the body (to allow for lambda
abstracts that achieve the effect of definitions like f(x) = 2); when
they do appear, their occurrences in the body are said to be bound
to the lambda operator. When the abstract is a predicate abstract,
it might be read as

the attribute that x4 ... X, have when it is true that ... X; ... Xy ...



We might take an abbreviated version of this reading as English
notation for predicate abstracts:
the attribute of X; ... X, that ... X; ... X ...

In case of the first predicate abstract above, we would have the
following symbolic form, English reading, and English notation:
Axy (y told x about y)
the attribute that x and y have when it is true thaty told x about y
the attribute of x andy that y told x about y

The English notation for abstracts is further from standard
English than was the English notation we used for connectives and
we will use it less often.

Variables have the grammatical status of individual terms but
have no reference values. Until it is bound to a lambda operator, a
variable is little more than a different way of marking a blank in a
sentence. It does more than a simple line only because it indicates
that the blank is one that could be linked to the place of a
predicate. When it is bound, a variable functions more actively, but
its function is merely to mark a correspondence between the place
of a predicate and a blank in a sentence. Because of this, an older
terminology referred to bound variables as “apparent variables.”
And a less convenient but clearer notation would replace these
variables by a more direct indication of the correspondence that
they mark—e.g., by lines linking places after the initial A with
locations in the body, as in the following alternative to the first
example above:

Axy (y told x about y)

M| [ ([told |about |)

In the latter diagram, lines show where occurrences of the terms
serving as input should be placed in the body in order to form the
output. In the lambda abstract, the same thing is indicated by the
correspondence between the variables in the lambda operator and
the variables marking blanks in the body.

Because bound variables only mark a correspondence between
locations in the A-operator and the body of the abstract, the bound
variables of different abstracts have no connection with one
another. This means that, for example, the following abstracts
express the same predicate:



Axy (y told x about y)
Ayz (z told y about z)

Each says that for any input terms t and v (in that order), the
output sentence should be v told T about v.

We will refer to as alphabetic variants expressions, like the
two abstracts above, that differ only in the particular variables they
use to link a lambda operator to places in the body of an abstract.
Notice that, although the variable y appears in both, it would be
replaced by a different one of the input terms in each case. Because
the identity and difference of variables matters only for
establishing links within an abstract, there is no connection
between occurrences of a variable in different abstracts.

English has devices which function like bound variables. In the
general case, an abstract might be stated fully in English as follows:
AX eee X (eoe Xq o Xy 220)

the attribute that n things have when it is true that ... the first ...
the nth ...

In this form of words, the “n things” are understood to be given
as a list of (not necessarily distinct) things of length n and
expressions like the first, the second, and so on, refer back to
locations in this list. The description of the attribute tells when it is
possessed by any such list of things, so no definite list of things is
in question; and the expressions the first, etc., that refer back to
list locations make no definite reference outside the sentence. In
short, expressions like the first function here like pronouns. This
may be clearer if we consider the case of a one-place predicate
abstract along with a comparable English expression:

Ax (Tom bought x)
the property that a thing has when it is true that Tom bought it

The English fills the blank marked by x in the body of the
abstract with a pronoun it that has a thing as its antecedent. Since
a thing makes no definite reference, neither does the pronoun; the
pronoun “refers back” to its antecedent only in the sense that their
references are linked in their indefiniteness: they are not indefinite
in independent ways. The general moral is that the variables used
in abstracts are like pronouns, and the lambda operators are like
their antecedents. You should not expect variables in the scope of
different lambda operators to be linked in their reference any more



than you would expect this of pronouns with different antecedents.

It is sometimes useful to consider the body of an abstract by
itself. Just as a variable is grammatically like an individual term
but does not have a reference value (not even the nil value), an
expression like

X told y about z.

that contains unbound variables is grammatically like a sentence
but does not say anything. It is merely a sentence with blanks that
might correspond to places of a predicate. The term formula is
used for any expression that is grammatically like a sentence, with
the term “sentence” reserved for formulas all of whose variables
are bound (to abstracts within the sentence). Since all formulas are
grammatically like sentences, the grammatical vocabulary applied
to “sentences” in previous chapters applies to all formulas. In
particular, formulas can be built from formulas by use of
connectives, so formulas can be compound and have components.

In particular, we can speak of an atomic formula. Now that
we analyze sentences and other formulas into components like
predicates and individual terms, the atomic formulas will no longer
be simply the unanalyzed sentences though those will still count as
atomic. We will also count as atomic any predication. Although
predications are compound and can even have formulas as
components (though not as immediate components), their role in
derivations is sufficiently analogous to that of unanalyzed
sentences for it to make sense to put them both in the same
category. There is a way of building the analogy into our syntactic
categories: an unanalyzed sentence can be thought of as a zero-
place predicate, one that requires no input to yield a sentence as
output.



