
3.3.2. Using lemmas to complete reductios

Now that we have IP, we are in a position to provide a proof for any
argument whose validity depends only on the properties of ⊤, ⊥,
conjunction, and negation. However, to do this using only the rules we
have so far, we would often need to use LFR—or, in simpler cases, Adj
—to make use of negative resources. This poses no problems when we
construct derivations for valid arguments, but it makes it difficult to
show that any argument is not valid. LFR does not itself exploit
resources, so negated compounds remain as active resources until a
gap is closed. In order to count an open gap as having reached a dead
end, we would need some description of the conditions under which
LFR had been used often enough. Such a description could certainly
be given; and, in the last two chapters, we will need to take an
analogous approach in the case of one of the rules for quantifiers. But,
in the case of negation, it is possible to keep track of the use of
resources by way of a genuine exploitation rule.

The basis for such an approach was the third lesson drawn from the
law of negation as a premise: if a reductio that has ¬ φ as a premise is
valid—that is, if Γ, ¬ φ ⇒ ⊥—then φ is a valid conclusion from the
premises other than ¬ φ (i.e., Γ ⇒ φ). And φ is just the lemma we
need in order to use the premise ¬ φ to complete the reductio. That
means not only that is it safe to introduce φ as a lemma but also that
the gap in which we establish the lemma need not contain ¬ φ among
its active resources. Of course, ¬ φ is needed along with the lemma to
reach the goal ⊥, but there is no need to introduce a second gap in
which we try to reach this goal (as would be done with LFR) because
such a gap would close immediately by Nc. And, indeed, the law for
negation as a premise tells us not only that we can reach the needed
lemma (provided that the reductio is valid to begin with) but also that
reaching this lemma is all that we need to do, for it says both that the
reductio argument Γ, ¬ φ / ⊥ is valid only in cases when the argument
Γ / φ is valid and that Γ, ¬ φ / ⊥ is valid in all such cases.

We will call the rule that implements these ideas Completing a
Reductio (CR).

│...
│¬ φ [φ is not atomic]
│...
│
││...
││
││
││
││
││
│├─
││⊥
│...

│...
│¬ φ n
│...
│
││...
││
│││
│││
││├─
│││φ n
│├─

n CR││⊥
│...

Fig. 3.3.2-1. Developing a derivation by exploiting a negated
compound at stage n.

The motivation for this rule lies in its use with the negations of non-
atomic sentences; and, in fact, we must limit is use to such sentences.
It is sound and safe in the case of atomic sentence, but it would not be
progressive in that case (given the way we are measuring distance
from a dead end) because it would replace a resource that we never
exploit by a goal that we could go on to plan for by IP; that is, it would
provide new opportunities for developing a derivation and thus send
us farther from reaching a dead end. Both IP and CR carry us between
gaps whose proximate arguments have the forms Γ, ¬ φ / ⊥ and Γ / φ;
but they carry us in opposite directions, so, if there is any overlap in
the sentences φ to which they apply, a derivation could move back and
forth between the two arguments forever. We block such circles by
limiting IP to cases where φ is atomic and limiting CR to cases where
φ is non-atomic.

The following derivations show, on the left, the use of CR in a
derivation for the argument from 3.2.2 that was used as an
illustration in the last subsection and, on the right, an analogous use
of LFR:

│¬ ((A ∧ B) ∧ ¬ C) 2
│A (3)
│B (3)
├─
││¬ C (4)
│├─

3 Adj │││A ∧ B X,(4)
4 Adj │││(A ∧ B) ∧ ¬ C X,(5)

│││●
││├─

5 QED│││(A ∧ B) ∧ ¬ C 2
│├─

2 CR ││⊥ 1
├─

1 IP │C

│¬ ((A ∧ B) ∧ ¬ C) (6)
│A (3)
│B (3)
├─
││¬ C (4)
│├─

3 Adj │││A ∧ B X,(4)
4 Adj │││(A ∧ B) ∧ ¬ C X,(5)

│││●
││├─

5 QED│││(A ∧ B) ∧ ¬ C 2
││
│││(A ∧ B) ∧ ¬ C (6)
││├─
│││●
││├─

6 Nc │││⊥ 2
│├─

2 LFR││⊥ 1
├─

1 IP │C

The most obvious difference between the two is an extra argument
in the second in which the lemma is (A ∧ B) ∧ ¬ C is used explicitly.
But the more important difference is that, while the first premise is
exploited at stage 2 in the left-hand derivation, it remains unexploited
in the second. It is true that the absence of the second gap introduced
with LFR makes the first derivation shorter, but that is not its chief
virtue. Derivations are not designed to be the most efficient way of
reaching a conclusion, and the left-hand derivation is a little longer
than the one at the end of 3.3.1 . The extra length in comparison with
that derivation is the result of introducing (A ∧ B) ∧ ¬ C as an explicit
goal. The derivation using CR is shorter than the one using LFR
because CR applies only in cases where we know exactly how to use
the lemma to complete the reductio. It is longer than the derivation
using just Adj because it provides us with a stage at which we can
mark its negation as exploited and makes explicit the resource aimed
at by the two uses of Adj.

Glen Helman 25 Aug 2005

