
2.2.1. Proofs as trees

Our study of entailments involving conjunction will rest on the principles
discussed in 2.1.1 . These are shown below in symbolic form on the left and in
English on the right:

φ ∧ ψ ⇒ φ 
φ ∧ ψ ⇒ ψ 
φ, ψ ⇒ φ ∧ ψ

both φ and ψ ⇒ φ 
both φ and ψ ⇒ ψ 
φ, ψ ⇒ both φ and ψ.

We will refer to the first two of these patterns as extraction (left and
right extraction when we wish to distinguish them) and to the third simply as
conjunction. To establish particular cases of entailment, we will want to link
together special cases of these general patterns and, eventually, of other
patterns, too.

One notation for doing that employs something like the two-dimensional
form we have used for arguments, with the conclusion below the premises and
marked off from them by a horizontal line. In order to make the premises of a
multi-premised argument available to serve as conclusions of further
argument, we will spread them out horizontally. In this style of notation, the
basic patterns for conjunction take the following forms (where abbreviations
of their names are used as labels):

 φ ∧ ψ
Ext

 φ

 φ ∧ ψ
Ext

 ψ

 φ ψ
Cnj

 φ ∧ ψ

Arguments exhibiting these patterns can be linked by treating the premises
of one argument as conclusions of other arguments. For example, the
following shows that (A ∧ B) ∧ C is a valid conclusion from the two premises A
and B ∧ C:

   B ∧ C   
  Ext   
 A  B  B ∧ C

Cnj Ext
 A ∧ B  C

Cnj
 (A ∧ B) ∧ C

The ability to put the principles for conjunction together in this way rests
on the general laws of entailment discussed in 1.4.2 . The law for premises
enables us to begin; it shows that the premises A and B ∧ C entail the tips of
the branches of this tree-like proof. Repeated uses of the chain law then
enable to add conclusions drawn using the principles for conjunction, and we
work our way down the tree showing that the original set of premises entails
each intermediate conclusion and, eventually, (A ∧ B) ∧ C. For example, just
before the end, we know that our original premises entail each of the premises



before the end, we know that our original premises entail each of the premises
of the final conclusion--i.e., that A, B ∧ C ⇒ A ∧ B and A, B ∧ C ⇒ C. The
chain law then enables us to combine these entailments with the fact that
A ∧ B, C ⇒ (A ∧ B) ∧ C (a case of Conjunction) to show that A, B ∧ C ⇒ (A ∧
B) ∧ C.

It is not hard to see that this process will work for any valid argument that
depends on conjunction alone. By working backward from its conclusion using
Cnj arguments we can grow a tree which will eventually have the ultimate
components of the conclusion at the tips of its branches. Call this an
analysis tree. By applying Ext arguments repeatedly to our premises, we
will eventually have a series of chains, each beginning with the premises and
ending with one of the ultimate components of a premise, with all such
components represented among the chains. Call these exploitation chains.
Applying this approach to the example above, we would have three
exploitation chains in addition to the analysis tree.

Analysis tree grown up from the
conclusion

 Exploitation chains grown down from
the premises

 A  B  
Cnj

 A ∧ B  C
Cnj

 (A ∧ B) ∧ C

 
A  B ∧ C  B ∧ C
 Ext Ext

 B  C

We can then construct the proof shown above by pasting the end of each
analysis chain over the tip of one of the branches of the analysis tree. In this
case, the chains match up one to one with the tips of branches; but, in other
cases, we might need to use more than one copy of a given chain, and we
might not need to use some chains at all. All that is required to complete a
proof is that the tip of each branch be matched by some chain, and that could
fail to happen only if the conclusion contained an ultimate component that
was not an ultimate component of any of the premises. But an argument
whose conclusion contained an ultimate component not appearing in the
premises would not be valid because, by making this component false and all
others true, we would make the conclusion false while making the premises
true. And, if the ultimate components of the premises and conclusion form a
set that is logically independent (in the sense discussed in 1.4.6 ), this sort of
assignment of truth values would correspond to some possible world. So if a
relation of entailment holds solely in virtue of the way sentences are formed
using conjunction (and not in virtue of logical relations among their ultimate
components), it can be shown to hold by the sort of proofs we have been
considering.

The way we have shown this will not work when we consider proofs
involving other connectives; and, in 2.3 , we will look at a different way of
arguing in the case of conjunction that is better suited to other logical forms.
We can make one step in that direction now by looking at some basic



We can make one step in that direction now by looking at some basic
principles for entailment that describe the conditions under which any
arguments involving conjunction are valid.

Γ, φ ∧ ψ ⇒ χ if and only if Γ, φ, ψ ⇒ χ (conjunction as a premise)

Γ  ⇒ φ ∧ ψ if and only if both Γ  ⇒ φ and Γ  ⇒ ψ (conjunction as a
conclusion)

These principles can be seen to hold by the comparing the sort of possible
worlds each side of the if and only if rules out. In the first principles, each
side rules out the possibility of a world in which χ is false while φ, ψ, and the
members of Γ  are all true; that means that these two entailments offer
equivalent guarantees, so each holds if and only if the other does. In the
second principle, the sort of worlds ruled out by guarantee on the left are the
worlds in which the members of Γ  are all true but φ or ψ is false, and the
same worlds are ruled out when we have both the guarantees on the right. The
upshot is that these two principles suffice, together with the law of premises,
to establish any cases of validity that depend on conjunction alone.

The if part of these principles reflects the validity of arguments of the forms
Ext and Cnj (together with the chain law). The only if part of the first tells us
that whatever a conjunction contributes as a premise of a valid argument is
already contributed by the conclusions we could derive by Ext; that is, our use
of a conjunction need only be by way of Ext. The only if part of the second
tells us that, if a conjunction is a valid conclusion, then the premises needed
to reach it by Cnj are themselves valid conclusions. When conjunction is the
only connective employed in our analysis of sentences, applying these two
principles repeatedly will eventually bring us back to arguments whose
premises and conclusions are all unanalyzed components. If these
components are logically independent, an argument whose premises and
conclusion are drawn from them is valid when and only when its conclusion is
among its premises; thus, if it is valid, its validity follows by the law of
premises.

The recipe for constructing tree-form proofs that we looked at earlier had
us put together an analysis tree and exploitation chains by pasting the ends of
the latter onto the tips of the former’s branches. It will help in comparing the
tree-form proofs to those we will go on to consider if we have a pattern of
argument to use as the glue, so we will add a pattern reflecting the reflexivity
of implication:

 φ
QED

 φ

The name for this abbreviates the Latin phrase quod erat demonstrandum,
which might be translated as what was to be proven. This Latin phrase is
traditionally used when a planned conclusion is reached. The use of the
pattern QED is illustrated in the following example, which establishes that
(A ∧ B) ∧ C, D ⇒ C ∧ (A ∧ D).



(A ∧ B) ∧ C, D ⇒ C ∧ (A ∧ D).

Analysis tree  Exploitation chains

   A  D
  Cnj
 C  A ∧ D

Cnj
 C ∧ (A ∧ D)

 
 (A ∧ B) ∧ C  (A ∧ B) ∧ C  (A ∧ B) ∧ C  D

Ext Ext Ext   
 A ∧ B  A ∧ B  C   

Ext Ext     
 A  B     

Tree-form proof

(A ∧ B) ∧ C  
Ext   

A ∧ B  
Ext   

(A ∧ B) ∧ C A D
Ext QED QED

C A D
QED Cnj

C A ∧ D
Cnj

C ∧ (A ∧ D)

Notice that this proof uses only two of the three chains of extractions that
begin with the first premise.

A couple of the principles for ⊤ and ⊥—those for ⊤ as a conclusion  and ⊥
as a premise —assert the validity of arguments and can be used to build tree-
form proofs:

 
ENV

 ⊤

 ⊥
EFQ

 φ

The label for the second, EFQ, abbreviates the Latin ex falso quodlibet
(which might be translated as from the false, whatever), a traditional
description the law for ⊥ as a premise, and the label for the first, ENV,
abbreviates ex nihilo verum  (from nothing, the true), which gives a
corresponding description of the law for ⊤ as a conclusion. The argument
ENV has no premises and serves to close off a branch of an analysis tree,
making it one that need not have an exploitation chain connected to it—as in
the following proof, which shows that A, B ⇒ (B ∧ ⊤) ∧ A:

 B   
QED ENV

 B  ⊤  A
Cnj QED

 B ∧ ⊤  A
Cnj

 (B ∧ ⊤) ∧ A



The pattern EFQ enables us to connect an exploitation chain ending with ⊥
to the tip of any branch. The following example uses it to show that
A ∧ (⊥ ∧ B) ⇒ C ∧ D:

 A ∧ (⊥ ∧ B)  A ∧ (⊥ ∧ B)
Ext Ext

 ⊥ ∧ B  ⊥ ∧ B
Ext Ext

 ⊥  ⊥
EFQ EFQ

 C  D
Cnj

 C ∧ D

The premise A ∧ (⊥ ∧ B) is the starting point for exploitation chains ending
in A and B, too, but even if these sentences had appeared at the tips of
branches of an analysis tree, the exploitation chain ending with ⊥ would have
been enough to complete the proof.

The two other laws for ⊤ and ⊥ have a different significance. The law for ⊤
as a premise  does not correspond to any pattern of valid argument. It merely
tells us that an exploitation chain ending with ⊤ contributes nothing to a
proof and may be ignored. Of course, such a chain might be connected to a
branch of an analysis tree that has ⊤ at its tip; but such a branch could be
closed off by ENV instead. The law for ⊥ as an alternative  does not figure as
a principle governing the construction of proofs at all. Because its two sides
have different numbers of alternatives, it does not provide a way of restating
claims of entailment: if one side has a single alternative and thus counts as
claim of entailment, the other will either have no alternatives or more than
one.
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