
1.4. Comparing content: logical properties and
relations

1.4.0. Overview

The properties and relations of sentence and propositions that
are subject matter of deductive logic can be arranged in three
groups.

1.4.1. A closer look at entailment  
Entailment will be at the heart of our study and we will begin by
looking in some detail at a couple ways of formulating its
definition.

1.4.2. Laws for entailment  
One way of getting a feel for the character of entailment is to see
what general principles can be stated for it.

1.4.3. Equivalence and tautologousness  
Like entailment, equivalence and tautologousness concern
conditional or unconditional guarantees of truth and both can be
defined in terms of entailment.

1.4.4. Absurdity and inconsistency  
Absurdity is one of another group of concepts that all concern
guarantees of falsity. The chief one among them is the idea of a
number of sentences being inconsistent, a guarantee that they
are not all true.

1.4.5. Exhaustiveness  
A final group of concepts involve exhaustiveness, a guarantee
that a group of sentences are not all false.

1.4.6. A general framework  
Although a conditional guarantee related to exhaustiveness is
not a concept in ordinary thought about deductive reasoning, it
subsumes the others we have seen and provides the basis for
seeing a certain kind of connection among the laws for them.
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1.4.1. A closer look at entailment

We will begin with a formal definition of the idea of entailment
as a conditional guarantee of truth. When a conclusion φ is
entailed by a set Γ  of premises, we have a guarantee that φ is true
provided that the members of Γ  are all true. This is a strong
guarantee for it holds, under the stated conditions, in all possible
worlds. We can state this definition more formally in two
equivalent ways.

Γ  ⇒ φ if and only if
there is no logically possible world in

which φ is false while all members
of Γ  are true

if and only if
φ is true in every logically possible

world in which all members of Γ
are true

It is worth emphasizing that these are not two different concepts
of entailment, for the two statements to the right of if and only if
say the same thing. Still, there is no redundancy because each of
the two emphasizes different aspects of the concept. The second—
which we will speak of as the positive form—is closely tied to the
motivation for the concept, to the reason why the concept is
valuable. The first form—the negative form—makes the content
of the concept especially clear, and this form of definition will
generally be the more useful when we try to prove things
concerning entailment. The other deductive properties and
relations we will consider can be given analogous pairs of
definitions, a negative form ruling out certain patterns of truth
values and another form stating a more positive generalization.

The pattern of truth values ruled out by entailment turns out to
be one of the more cumbersome ones to state; and, since we will
refer to it often, it will be useful to have special vocabulary for it.
We will say that a possible world divides a set Γ  from a set Δ
when every member of Γ  is true in the world and every member of 
Δ  is false. This use of the word divide will prove helpful in a
number of ways, but there is one respect in which it may be
misleading. Other uses of divide point to a symmetric relation,
when a is divided from b, b is divided from a. But the specific
truth values that must be assigned to sets Γ  and Δ  for a world to
divide Γ  from Δ  make this relation between the two sets



divide Γ  from Δ  make this relation between the two sets
fundamentally asymmetric. To counteract the suggestion of
symmetry you might think of Γ  being divided from Δ  by being “set
above” it, thinking of truth as being “higher” than falsity. As with
the premises of an argument, we will have no need, when
considering this concept of division, to distinguish between a
sentence and a set with that sentence as its only member, so we
may regard one or the other terms of the relation of division as a
sentence. Using this idea, we can state the negative form of the
definition of entailment as follows:

Γ  ⇒ φ if and only if
there is no logically possible world

that divides Γ  from φ
We will say that a possible world divides an argument when it

divides its premises from its conclusion, so we can say that an
argument is valid when no possible world divides it.

The kind of possible world ruled out by the negative form of the
definition must, of course, also have some relation to the positive
form. The positive form is generalization concerning all possible
worlds of a certain sort. When a generalization is false, it is
because of counterexample, something of sort about which we
generalize that does not have the property we have said all such
things have. A counterexample to the claim that all birds fly is a
bird that does not fly. In the positive definition of entailment, the
generalization is about all possible worlds in which the premises
are all true and such worlds are said to all have the property that
the conclusion is true in them. A counterexample to such a
generalization is then a world in which the premises are all true
but the conclusion is not. Thus a possible world that divides an
argument is a counterexample to the claim that its premises entail
its conclusion.

It is important to notice how little a claim of entailment says
about the actual truth values of the premises and conclusion of an
argument. We can distinguish four patterns of truth values that the
premises and conclusion could exhibit. Of these, a claim that an
argument is valid rules out only the one at the far right of Figure
1.4.1-1.

Patterns admitted ruled out

Premises all T not all T not all T all T

Conclusion T T F F

Fig. 1.4.1-1. Patterns of truth values admitted and ruled out by
entailment.

So, knowing that an argument is valid tells us about actual truth
values only that we do not find the conclusion actually false when
the premises are all actually true. The real content of a claim of
entailment lies not in what it tells us about the actual world but in
the fact that it makes a claim about all possible worlds. The other
three patterns all appear in the actual truth values of some valid
arguments (though not all are possible for certain arguments).

To see examples of this, consider the case of an argument whose
conclusion is among its premises—for example,

Indianapolis is the capital of Indiana 
Springfield is the capital of Illinois

Indianapolis is the capital of Indiana

Such an argument is trivial but, because of this, it is obviously
valid. Its conclusion certainly does no more than extract
information from the premises; and, because it is one of the
premises, there is certainly no possible world in which it is false
while the premises are all true. Now the example above has true
premises and a true conclusion, the first of the patterns in Figure
1.4.1-1. The other two patterns of truth values allowed for valid
arguments can be produced by changing Illinois and Indiana,
respectively, to Ohio.

Indianapolis is the capital of Indiana 
Springfield is the capital of Ohio

Indianapolis is the capital of Indiana

Indianapolis is the capital of Ohio 
Springfield is the capital of Illinois
Indianapolis is the capital of Ohio

That these two patterns of truth values should be possible is
clear also from the idea of extracting information. Information can
be extracted from a set of sentences even though they are not all
true, and the information extracted in such a case might be either
true or false.



true or false.

Of course, seeing one of these permitted patterns does not tell us
that the argument is valid; no information that is limited to actual
truth values can do that because validity concerns all possible
worlds, not just the actual one. In particular, having true premises
and a true conclusion does not make an argument valid; the
following argument is not valid:

Indianapolis is the capital of Indiana
Springfield is the capital of Illinois

For, although the single premise and the conclusion are both
true, there is a logical possibility of the capital of Illinois being
different while that of Indiana is as it actually is, so there is a
possible world that divides the premise from the conclusion.
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1.4.2. Laws for entailment

Most of our concern with entailment will not be with particular
examples, but instead with general laws. Most of these will be
generalizations about specific logical forms, but some very general
ones can be stated now (and a few of these appeared already in the
exercise 1.1.x.1 ).

We will begin with single-premised entailment—i.e., with
implication. Implication is reflexive in the sense that any
sentence φ implies itself, and it is transitive in the sense that, if a
sentence χ is implied by a sentence ψ that is in turn implied by a
sentence φ, then χ is also implied directly by φ. That is,

φ ⇒ φ; and

if φ ⇒ ψ and ψ ⇒ χ, then φ ⇒ χ
for any sentences φ, ψ, and χ. Notice that the second of these can
equally well be described as saying that a sentence χ may be
validly concluded from anything φ that implies a premise ψ from
which χ may be validly concluded. In short, it tells us that we will
not destroy validity if we replace the conclusion of a single-
premised valid argument by something it implies, and we may
replace the premise by anything that implies it. More graphically,

if φ / ψ is valid and ψ ⇒ χ, then φ / χ is valid; and

if ψ / χ is valid and φ ⇒ ψ and , then φ / χ is valid.

Laws somewhat analogous to reflexivity and transitivity apply to
arguments with any sets of premises. What we will call the law
for premises says that a sentence is entailed by any set of
premises containing it. That is,

Γ, φ ⇒ φ
for any set Γ  of sentences and any sentence φ. The analogue of

the second law for single-premised arguments says that a set of
premises that entails every premise of a valid argument also entails
its conclusion: for any sets Γ  and Δ  and any sentence ψ,

if Γ  ⇒ φ for each premise φ in Δ  and Δ  ⇒ ψ, then Γ  ⇒ ψ
We will refer to this as the chain law since it enables us to link

valid arguments together to get new valid arguments. These are not
directly principles of reflexivity and transitivity since those ideas
only make sense for relations between the same sorts of things; but



only make sense for relations between the same sorts of things; but
a relation between sets of sentences that holds when Γ  entails
every member of Δ  is reflexive and transitive.

We will consider two further general laws of entailment that
follow from the law for premises and the chain law but are each
valuable for special purposes. The first tells us that we can add
premises without destroying the validity of an argument: for any
sets Γ  and Δ  and any sentence φ

if Γ  ⇒ φ, then Γ, Δ  ⇒ φ
This law should not be surprising because, in general, the more

premises we have, the easier it is to validly conclude a given
sentence. If we think of entailment as associating a collection of
valid conclusions with any set of sentences, this law tells us that as
the set of premises increases the set of valid conclusions will never
decrease. Mathematicians apply the term monotonic to situations
like this, so we will speak of this law as the principle of
monotonicity for entailment.

Although monotonicity will play only an auxiliary role in our
discussion of deductive reasoning, it is a distinguishing
characteristic of deductive reasoning that such a principle holds.
For, when reasoning is not risk free, additional data can show that
a initially well-supported conclusion is false—and it can do this
without undermining the original on which we based our
conclusion. If such further information were added to our
premises, we would not expect the conclusion to still be well
supported. Indeed, the risk in good but risky inference can be
thought of as a risk that further information will undermine the
quality of the inference, so risky inference (or, more precisely, the
way the quality of such inference is assessed) is, in general, non-
monotonic. This is true of inductive generalization and of
inference to the best explanation of available data, but the term
non-monotonic is most often applied to inferences that are based
on features of typical or normal cases. One standard example is the
argument from the premise Tweety is a bird to the conclusion
Tweety flies. This conclusion is reasonable when the premise
exhausts our knowledge of Tweety; but the inference is not free of
risk, and the conclusion would no longer be reasonable if we were
to add the premise that Tweety is a penguin.

The other side of the coin is that dropping premises can never
help in deductive reasoning and may well destroy validity. But,
while we cannot in general safely drop premises, we can drop a
premise when it is entailed by others that we retain:

if Γ, φ ⇒ ψ and Γ  ⇒ φ, then Γ  ⇒ ψ
for any set Γ  and any sentences φ and ψ. The term lemma can be
used for a conclusion that is drawn not because it is of interest in
its own right but because it helps us to draw further conclusions.
This law tells us that anything we can conclude using an
intermediate conclusion φ is a valid conclusion from the original
premises Γ, so it justifies the use of lemmas, and we will refer to it
as the law for lemmas.

In summary, what these laws tell us about entailment is that (i)
we can validly conclude any premise (law for premises), (ii) we can
validly conclude anything entailed by valid conclusions from our
premises (chain law), (iii) we can add premises without destroying
validity (monotonicity), and (iv) we may safely drop from our
premises lemmas that are entailed by the remaining premises (law
for lemmas).
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1.4.3. Equivalence and tautologousness

Recall that the relation of equivalence applies to sentences that
have the same informational content—for example,

Neither the shoulders nor the median are finished 
The shoulders and the median are both unfinished

In each possible world, such sentences must have the same truth
value as each other, which is the same as saying that neither can
be false when the other is true, that each entails the other.

We could define equivalence as mutual entailment; but it will be
useful to define it directly using definitions similar to those we
have given for entailment. The key idea is that logical equivalence
amounts to the necessary identity of truth values. Formally, we can
describe the conditions under which a pair of sentences φ and ψ
are (logically) equivalent as follows:

φ ⇔ ψ if and only if
there is no possible world in which φ

and ψ have different truth values

if and only if
φ and ψ have the same truth value as

each other in every possible world

Notice that the second form does not say that the truth values of
these sentences do not vary from possibility to possibility, only
that, if they vary, they vary in the same way.

The connection between equivalence and entailment can then be
stated as the law:

φ ⇔ ψ if and only if both φ ⇒ ψ and ψ ⇒ φ
for any sentences ψ and φ. You may think of this as the basic law
for equivalence because the properties of equivalence can be
derived from those of entailment by using it.

The key properties are stated in the following group of laws,
which hold for any sentences φ, ψ, and χ and any set Γ  of
sentences:
φ ⇔ φ (reflexivity)
φ ⇔ ψ if and only if ψ ⇔ φ (symmetry)
if φ ⇔ ψ and ψ ⇔ χ, then φ ⇔ χ (transitivity)
if Γ  ⇒ φ and either φ ⇔ ψ or ψ ⇔ φ, then Γ  ⇒ ψ

(conclusion replacement)

if Γ, φ ⇒ χ and either φ ⇔ ψ or ψ ⇔ φ, then Γ, ψ ⇒ χ
(premise replacement)

We saw in 1.4.2  that laws of reflexivity and transitivity hold for
implication. But implication is not symmetric; it is one
consequence of equivalence amounting to mutual  entailment or
implication. The last two laws tell us that equivalence sentences
play the same role as conclusions and as premises; each of two
equivalent sentences may be replaced by the other as either a
conclusion or a premise without destroying validity.

Given the symmetry of equivalence the alternative or ψ ⇔ φ in
the replacement laws is redundant. It is stated to emphasize that
the direction of the replacement does not matter—unlike the
following laws for entailment alone (which hold for any set Γ  and
any sentences φ and ψ):

if Γ  ⇒ φ and φ ⇒ ψ, then Γ ⇒ ψ (conclusion covariance)

if Γ, φ ⇒ χ and ψ ⇒ φ, then Γ, ψ ⇒ χ (premise
contravariance)

These are more general versions of a couple of ways of stating
the transitivity of implication that were noted in 1.4.2 . They tell
us that we can replace a conclusion by something it implies and
replace a premise by something that it is implied by. The terms
covariance and contravariance refer to the fact that in one case
the direction of replacement is same as the direction of the
implication and in the other case has the opposite direction.
Equivalence in either direction between a pair of sentences licenses
replacement in both directions because equivalent sentences both
entail and are entailed by each other. We will see later that
equivalence licenses further sorts of replacement—not only of
whole sentences but of their components—and this is to be
expected because equivalent sentences are identical with regard to
the aspects of meaning that are of concern to deductive logic.

The two forms of the definition of a tautology are as follows:

φ is a tautology if and only if
there is no possible world in

which φ is false

if and only if
φ is true in every possible

world

That is, because a tautology says nothing, it cannot be false and
we have an unconditional guarantee of its truth.



we have an unconditional guarantee of its truth.

Recall that, because the truth value of a tautology is fixed for
every possible world, any two tautologies are equivalent. That
means that laws for the specific tautology ⊤ apply also to other
tautologies. The following two laws concerning ⊤ hold for every set
Γ  of sentences and every sentence φ:

⇒ ⊤ (⊤ as a conclusion)

if Γ,⊤ ⇒ φ, then Γ  ⇒ φ (⊤ as a premise)

The law for ⊤ as a conclusion says that ⊤ is a valid conclusion
from the empty set of premises (which we represent by leaving the
left side of ⇒ empty). It follows from the monotonicity of
entailment that ⊤ is a valid conclusion from any set of premises.
The law for ⊤ as a premise reflects another consequence of the fact
that a tautology conveys no information: since ⊤ contributes
nothing as a premise, it can be dropped from any list of premises
without destroying the validity of an argument.
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1.4.4. Absurdity and inconsistency

Just as a tautology is a sentence for which we have an
unconditional guarantee of truth, we can define an absurd
sentence as one for which we have an unconditional guarantee of
falsity:

φ is absurd if and only if
there is no possible world in

which φ is true

if and only if φ is false in every possible world

Like tautologies absurdities are all equivalent and all have the
same properties as the representative absurdity ⊥. These properties
are the opposite of those of ⊤. In particular, anything can be
concluded from ⊥ (and thus from any set of premises containing
it). That is,

⊥ ⇒ φ (⊥ as a premise)

for any sentence φ.

We have no law for restating conditions under which a set of
sentences has ⊥ as a valid conclusion; the property of entailing ⊥
will be a fundamental deductive concept, an important addition to
the range of ideas introduced in 1.2.2 . We can, however, define
this concept in terms of truth value and possible worlds. Because
of the nature of entailment, when a set Γ entails ⊥, we have a
conditional guarantee of the truth of ⊥; and, since ⊥ cannot be
true, this must be a guarantee whose conditions cannot be met.
That is, a set entails ⊥ just in case its members cannot all be true.
We will say that such a set is inconsistent, an idea that may be
defined more formally as follows:

Γ  is inconsistent if and only if
there is no possible world

in which all members of 
Γ  are true

if and only if
in each possible world, at

least one member of Γ  is
false

Notice that there is no requirement here that any member of Γ
be false in all possible worlds, that Γ  contain an absurd sentence.
There must always be an error of fact somewhere in Γ  but its
location may change from possible world to possible world.



Notice that an absurd sentence like ⊥ is one that forms an
inconsistent set by itself. This means that absurdity is really a
special case of inconsistency. Another of moving from absurdity to
a more general concept is to think of a conditional guarantee of
falsity (in the way that entailment is a conditional guarantee of
truth). We will speak of such a concept as exclusion  or relative
inconsistency. It is the idea of a sentence being excluded by a
set or being inconsistent with it:

φ is excluded by (or is
inconsistent with) Γ if and only if

there is no possible
world in which φ
and the members of
Γ  are all true

if and only if

φ is false in every
possible world in
which all members
of Γ  are true

The two ways we have used to express this idea reflect the
connections with other concepts that are exhibited by the two
forms of its definition. On the one hand, a sentence is inconsistent
with a set when adding it to the set would produce an inconsistent
set. This is the idea behind the negative form of the definition.
Notice that any member of an inconsistent set is inconsistent with
the set formed of all other members; each member is equally liable
to being singled out in this way as a scapegoat for whole set’s
inconsistency. The situation is symmetric in another way, too: it
makes as much sense to say that Γ  is inconsistent with φ as to say
that φ is inconsistent with Γ  since our focus is on the inconsistency
of the set formed from the two.

On the other hand, the positive form of the definition describes a
conditional guarantee of falsity. This is a negative analogue to
entailment and the verb exclude provides a corresponding
grammatical analogue to entail. When applying the earlier
unqualified concept of inconsistency to pairs of sentences, we will
often speak of members of the pair as mutually exclusive
because, when {φ, ψ} is an inconsistent set, each of φ and ψ
excludes the other.

The property of inconsistency and the relation of exclusion or
relative inconsistency are tied by entailment by the following basic
laws:

laws:
Γ  is inconsistent if and only if Γ  ⇒ ⊥ (basic law for

inconsistency)
Γ  excludes (or is inconsistent with) φ if and only if Γ, φ ⇒ ⊥

(basic law for exclusion)

A number of further principles follow directly from the laws
stated for entailment by using the laws above. In the case of simple
inconsistency, the four features of entailment summarized at the
end of 1.4.2  have as direct consequences the following: (i) any set
with an absurd member is inconsistent, (ii) any set that entails all
members of an inconsistent set is inconsistent, (iii) any sentence
may be added to an inconsistent set without destroying its
inconsistency, and (iv) a sentence may be dropped from an
inconsistent set without destroying inconsistency provide it is
entailed by the remaining members. The situation is a little more
complex in the case of exclusion, but the four laws for entailment
together may used to establish, among other things, the following
principles for exclusion: (i) an absurd sentence is excluded by any
set, (ii) an inconsistent set will exclude every sentence, (iii) a set
excludes anything excluded by a set whose members it entails, (iv)
a sentence excluded by a set will also be excluded by any larger set,
(v) a sentence may be dropped from an excluding set without
destroying the exclusion provided it is entailed by the remaining
members, and (vi) a set that both entails and excludes the same
sentence is inconsistent.

Entailment and exclusion are opposites in a way analogous to
tautologousness and absurdity. And, although they are both
deductive concepts, they combine to set bounds for other forms of
reasoning. If we are confident about the accuracy of a set of data,
any sentence that is entailed by the data is a reasonable conclusion
but any that is excluded by the data would be unreasonable. The
norms of non-deductive forms of reasoning—whether this be
inductive generalization, inference to the best explanation, or non-
monotonic reasoning about typical examples—draw a line between
the extremes provided by entailment and exclusion. They identify
reasonable conclusions that can be added to the ones entailed by
the data while avoiding any that are excluded by it. In a picture,



Fig. 1.4.4-1. Reasonable (but not necessarily deductive)
conclusions from a body of data in relation to the sentences entailed

by or excluded by the data.

Of course, the bounds provided by entailment and exclusion are
firm only when we are confident in our data, and calling data into
question is itself an important form of reasoning. But here, too,
entailment and exclusion are relevant since they indicate ranges of
claims that would never or would always lead us to call data into
question.
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1.4.5. Exhaustiveness

Exclusion has entailment as its natural opposite but
inconsistency has a natural opposite of another sort. We will say
that a set is exhaustive or that its members are jointly
exhaustive under the following conditions:

Γ  is exhaustive if and only if
there is no possible world in

which all members of Γ are
false

if and only if
in each possible world, at

least one member of Γ  is
true

The term exhaustive reflects the fact that an exhaustive set
exhausts all possibilities in the sense that any possible world is left
open by at least one member of the set. That is, if we collect the
possible worlds left open by each of the members of an exhaustive
set and combine all these collections, we will find all possible
worlds included.

Exhaustiveness is an unconditional guarantee but it applies to
sentences, not individually, but as a group. That is the reason for
using the qualification jointly when we speak about the members
of the set rather than the set itself. And we often have reason to
speak of the members because the most important application of
this idea for our purposes is to sets with two members. In that
case, we say pair of sentences φ and ψ are jointly exhaustive when
the set formed of the two is exhaustive—that is, when we are
guaranteed that at least one of the two is true.

The most important application of the joint exhaustiveness of
pairs is in the analysis of the relation of contradictoriness,
which provides a kind of opposite to equivalence:

φ and ψ are 
contradictory

if and only if
there is no possible world in

which φ and ψ have the
same truth value

if and only if
in each possible world, φ and 
ψ have opposite truth values

To say that a pair of sentences come with this sort of guarantee
of opposite truth values is to say that we have a guarantee that
they are not both true and a guarantee that they are not both false.



they are not both true and a guarantee that they are not both false.
That is, for any sentences φ and ψ,
φ and ψ are contradictory if and only if φ and ψ are both

mutually exclusive and jointly exhaustive (basic law for
contradictoriness)

Although in ordinary discourse, the term contradictory is often
applied to sentences that are merely mutually exclusive, in logical
contexts it tends to be applied only to sentences that are also
jointly exhaustive. Contradictoriness will play a central role in our
account of the logical properties of negation and it is crucial for
this that it have ties to both inconsistency and exhaustiveness.

The final deductive concept we will consider is a very general
relation that is both a conditional guarantee related to
exhaustiveness and a generalization of both entailment and
inconsistency. Relative exhaustiveness is a relation between
sets of sentences; when it holds, we will say that one set renders
the other set exhaustive. Our notation for this idea will extend
the use of the entailment arrow to allow a set or a list of sentences
to appear on the right. Relative exhaustiveness is defined as
follows:

Γ  ⇒ Δ if and only if
there is no possible world in which all

members of Δ  are false while all
members of Γ  are true

if and only if
in each possible world in which all

members of Γ  are true, at least one
member of Δ  is true

When a set Δ  is exhaustive relative to a set Γ  (that is, when 
Γ  ⇒ Δ) the collection containing of any possible world left open by
any member of Δ  includes all worlds in which every member of Γ  is
true. Notice that this is quite different from saying that Γ  entails
each member of Δ  (a relation between sets mentioned in 1.4.2 )
for that would imply a conditional guarantee that all members of Δ
are true while relative exhaustiveness provides instead a guarantee
that at least one member of Δ  is true. For this reason, we will refer
to multiple sentences on the right of ⇒ as alternatives rather
than conclusions. In these terms, the definition of relative
exhaustiveness tells us that a set of premises renders a set of
alternatives exhaustive if and only if, in each possible world in
which all the premises are true, at least one of the alternatives is

which all the premises are true, at least one of the alternatives is
true. Let us extend the idea of division from 1.4.1  to pairs of sets,
saying that a possible world divides Γ  from Δ  when each member
of Γ  is true in that world while each member of Δ  is false. Then we
can say that Γ  ⇒ Δ  when there is no possible world that divides Γ
from Δ. So a world that divides Γ from Δ  is a counterexample to
exhaustiveness of Δ  relative to Γ.

There are three basic principles for relative exhaustiveness,
which are rough analogues of the laws for implication and
entailment. For any sentence φ and any sets Γ, Δ, Σ, and Θ of
sentences:

φ ⇒ φ
if Γ  ⇒ Δ, then Γ, Σ ⇒ Δ, Θ
if Γ  ⇒ φ, Δ  and Γ, φ ⇒ Δ, then Γ  ⇒ Δ
First corresponds to the reflexivity of implication and the law for

premises, and the second corresponds to the law of monotonicity.
The third—usually called the cut law—is related to both the chain
law and the law for lemmas (which are closely related to each
other).

The second of these principles reflects the fact that being able to
divide sets means being able to assign certain values to all their
members. As a result, if it is impossible to do this for given sets 
Γ  and Δ, it will remain impossible if members are added to either
of them. The first principle reflects the fact that, because a
sentence cannot be both true and false, it cannot be divided from
itself. The cut law reflects the other side of the coin, the fact every
sentence is either true or false. The easiest way to see the
connection involves a kind of roundabout argument that is one of
the reasons that the negative forms of definitions are useful.
Suppose that Γ  ⇒ Δ  fails—i.e., that some possible world divides 
Γ  from Δ. This world must also assign some truth value to any
given sentence φ. If it makes φ false while dividing Γ  from Δ, the
claim Γ  ⇒ φ, Δ  will fail; and, if it makes φ true, the claim Γ, φ ⇒ Δ
will fail. Thus, if Γ  ⇒ Δ  fails, then so will either Γ  ⇒ φ, Δ  or Γ, φ 
⇒ Δ. But that means that if Γ  ⇒ φ, Δ  are Γ, φ ⇒ Δ  hold, the claim 
Γ  ⇒ Δ  must hold, too.
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1.4.6. A general framework

The value of relative exhaustiveness does not lie in capturing
some ordinary vocabulary for discussing deductive reasoning but
instead in its ability to encompass other ideas that do. For
example, entailment is the special case of relative exhaustiveness
where a single alternative is rendered exhaustive. And the notation
is the same. Given our notational conventions, Γ  ⇒ φ means both
that φ is entailed by Γ  and that the set whose only member is φ is
rendered exhaustive by Γ. Inconsistency can be expressed in terms
of relative exhaustiveness by way of entailment, but it can be
expressed in a more direct way, too. Since there is no way that the
empty set could have at least one member true in any possible
world, to say that it is exhaustive relative to a set Γ is to say that
the members of Γ  cannot all be true. So to write Γ ⇒ (with nothing
to the right of the arrow) is to say that Γ  is inconsistent.

The following table uses connections with relative
exhaustiveness to provide notation for each of the concepts we
have seen in this chapter:

Concept Notation

Γ  entails φ Γ ⇒ φ
φ is a tautology ⇒ φ
φ and ψ are equivalent both φ ⇒ ψ and ψ ⇒ φ

(abbreviated to φ ⇔ ψ)

Γ  excludes φ Γ, φ ⇒

Γ  is inconsistent Γ ⇒

φ and ψ are mutually exclusive φ, ψ ⇒

φ is absurd φ ⇒

Γ  is exhaustive ⇒ Γ
φ and ψ are jointly exhaustive ⇒ φ, ψ
φ and ψ are contradictory both φ, ψ ⇒ and ⇒ φ, ψ

(abbreviated to ⇔ φ, ψ)

The double arrow notation used for equivalence and
contradictoriness may suggest the more general idea of sets that
render each other exhaustive—i.e., sets Γ  and Δ  such that Γ ⇔ Δ.
But this idea is not of much interest apart from the two special
cases. In particular, sets related in this way need not have
equivalent roles in deductive reasoning (as can be seen by noting
that a pair of contradictory sentences form a set that renders



that a pair of contradictory sentences form a set that renders
exhaustive and is rendered exhaustive by the empty set).

The properties and relations listed above amount to guarantees
that certain patterns of truth values are logically impossible. And
the particular patterns are shown by the notation used, for in each
case Γ  ⇒ Δ  says that no possible world divides Γ  from Δ. It is also
useful to have vocabulary for speaking about cases where no
pattern is ruled out. We will say that a sentence is logically
contingent if both truth values appear for it among possible
worlds—if it is both possibly true and possibly false. This is to say
that it is neither tautologous nor absurd. We will say that a pair of
sentences are logically independent if each of the four patterns
of truth values for the two sentences is exhibited in some possible
world. This is the same as saying that the two sentences are
neither mutually exclusive nor jointly exhaustive and that neither
implies the other. This also implies that each of the two sentences
is logically contingent.

Finally, we can extend the idea of logical independence to a set
of sentences by saying that the members of a set of sentences are
independent when any way of assigning a truth value to each of
them is exhibited in at least one possible world. When the
sentences in a set are not independent, not every way of dividing
them into a set of true sentences and a set of false sentences is
logically possible—and that is to say that the set contains two
disjoint (i.e., non-overlapping) subsets one of which renders the
other exhaustive. So the members of a set Γ  are logically
independent when the relation of relative exhaustiveness never
holds between non-overlapping subsets of Γ. (When a pair of sets
do share a member, each renders the other exhaustive no matter
what the sets are like otherwise.) When a set is logically
independent, each member is contingent and any two of its
members are logically independent, but contingency of members
and independence of pairs does not by itself imply that the set as a
whole is logically independent. For example, assuming the
sentences X is fast, X is strong, X has skill, and X has stamina
form an independent set, the sentences

X is fast 
and strong

X has skill 
and stamina

X is fast 
and has stamina

are each contingent, and any two of them are independent.
However, the first two taken together entail the third, so these

However, the first two taken together entail the third, so these
three more complex sentences do not form an independent set.

The idea of relative exhaustiveness thus provides the resources
for both surveying other deductive properties and relations and for
speaking about cases where none of them hold. But the kind of
symmetry built into the idea (and exhibited in the laws for it seen
at the end of 1.4.5 ) also provides a way of describing connections
among various deductive principles.

This description will also employ the idea of contradictoriness. If
a pair of sentences are contradictory, then each will be true in a
possible world if and only if the other is false. Since in assessing
relative exhaustiveness, we consider, for each possible world, the
truth of premises and the falsity of alternatives, having one of a
pair of contradictory sentences as a premise comes to the same
thing as having the other as an alternative. So we can remove a
sentence from one side of the arrow if we add a contradictory
sentence on the other side. This is stated more formally in the
following, which will serve as our basic law for relative
exhaustiveness

if ⇔ φ, φ′, then Γ, φ ⇒ Δ  if and only if Γ  ⇒ φ′, Δ
We can use this principle (read from right to left) to replace

alternatives by contradictory premises. If we begin with a finite set,
we can eventually transform a claim of exhaustiveness into a claim
of entailment. Our chief application of this will be one its simplest
cases: if ⇔ φ, φ′, then Γ ⇒ φ, ψ if and only if Γ, φ′ ⇒ ψ. That is, a
pair of sentences φ and ψ are rendered exhaustive by a set Γ of
premises if and only one of the pair, ψ, is entailed by Γ  together
with a sentence φ′ that is contradictory to the other member of the
pair. Since the order of a list of alternatives does not matter (so
saying that Γ  ⇒ φ, ψ is the same as saying that Γ  ⇒ φ, ψ), this law
tells us that we can drop either of a pair of alternatives if we add to
the premises a sentence contradictory to the alternative we drop.

The properties of ⊤ and ⊥ take a particularly symmetric form
when stated in terms of relative exhaustiveness.

as a premise as an alternative

Tautology if Γ, ⊤ ⇒ Δ, then Γ  ⇒ Δ ⇒ ⊤

Absurdity ⊥ ⇒ if Γ  ⇒ ⊥, Δ, then Γ  ⇒ Δ



That is, while ⊤ contributes nothing as a premise and may be
dropped, it is sufficient by itself as the only alternative (no matter
how small our set of premises). And while ⊥ is sufficient by itself
as a premise (no matter how small the set of alternatives is), it
contributes nothing as an alternative and may be dropped. The
symmetry here might be traced to that of relative exhaustiveness:
since ⊤ and ⊥ are contradictory, the principles on each diagonal
are connected by the basic law for relative exhaustiveness.

However, there is a more general idea behind this symmetry. To
take the simplest case above, we might state the lower left and
upper right as follows:

⊥ ⇒
⊤⇐

(where an arrow running right to left is understood to have its
alternatives on its left and its premises on its right). That is, the
difference lies in interchanging Absurdity and Tautology and
reversing the direction of the arrow—or, what comes to the same
thing, interchanging premises and alternatives. If we apply the
same transition to the principle at the upper left we get

if Γ, ⊥ ⇐ Δ, then Γ  ⇐ Δ
or, rewriting so the arrows run left to right (without change of
premises and alternatives),

if Δ  ⇒ ⊥, Γ, then Δ  ⇒ Γ
The latter differs from the principle for Absurdity as an

alternative on the lower right above only in the interchange of Γ
and Δ; and, since each could be any set, their interchange does not
change the content of the principle. The possibility of this sort of
transformation can be expressed by saying that ⊤ and ⊥ on the
one hand and premise and alternative on the other constitute pairs
of dual terms. We will run into other pairs of dual terms later.
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1.4.s. Summary

Entailment  may be defined in two equivalent ways, either as
the relation that holds when the conclusion is false in no possible
world in which all the premises are true or as the relation which
holds when the conclusion is true in all such worlds. The first
approach can be stated more briefly by saying that an argument is
valid when no world divides  the premises from conclusion; a
world that does divide premises from conclusion is a
counterexample  to the claim of entailment or validity.

The idea of entailment can also be understood by way of certain
laws governing it. For example, if we limit ourselves to single-
premised arguments—i.e., to implication—the relation is reflexive
and transitive . The law for premises  and the chain law  are
analogous principles that apply to entailment more generally.
Entailment also obeys a principle of monotonicity  asserting that a
premises may always be added without undermining entailment
(something does not hold for many forms of non-deductive
inference) and a law for lemmas  that tells us that a premise may
dropped when it is entailed by other premises.

Other properties and relations besides entailment can be given
pairs of negative and positive definitions. This is true for the ideas
of logical equivalence  and tautologousness  introduced in 1.2.2 .
Sentences are equivalent when they entail each other, and this
basic law  implies that equivalence is symmetric  as well as
reflexive  and transitive . Moreover, equivalent statements may
replace  one another either as premises or conclusions of an

argument without affecting its validity (unlike the case of
entailment which obeys only the weaker laws of conclusion
covariance  and premise contravariance ). The laws governing
tautologies are most easily stated by focusing on the particular case
of Tautology ⊤. For example, ⊤ is always a valid conclusion , but
it never contributes anything as a premise and may be freely
added to or dropped from the premises  without changing an
argument’s validity.

The definitions of absurdity  are in a way opposite those of
tautologousness and having Absurdity ⊥ as a premise , like having
a ⊤ as a conclusion, makes an argument valid. When an argument
with ⊥ as its conclusion is valid, its premises form an inconsistent



set . Inconsistency is the fundamental negative concept of
deductive logic and the relative  concept of being excluded by  or
inconsistent with a set is a kind of negative opposite to entailment.
As a relation between pairs of sentences relative inconsistency is
symmetric and such sentences are said to be mutually exclusive .
Although inconsistency is a fundamental deductive property, it is
one we will establish by using laws  that describe it in terms of
entailment.

The negative concepts of inconsistency and exclusiveness are
opposed in one way to entailment and in another way to
exhaustiveness . Contradictory  sentences are ones that are

bound to differ in truth value; such sentences can be characterized
as both mutually exclusive and jointly exhaustive . Exhaustiveness
can be conditional  and this is a relation between sets that
generalizes entailment to allow a set of alternatives  rather than a
single conclusion. This relation fails when a possible world
divides  its premises from its alternatives by making the former all

true and the latter all false. Relative exhaustiveness obeys cut law
which are analogous to, but more symmetric than, the principles
governing entailment.

Relative exhaustiveness has an important role in unifying the
concepts of deductive logic. All the ones we have seen can be
described as special cases  of it. We can also use it to describe the
absence of deductive properties and relations, whether this is the
logical contingency  of individual sentences or the logical

independence  of pairs or larger sets. Laws governing relative
exhaustiveness in its own right tend to be symmetric in form.
Relative exhaustiveness can be connected with entailment by law
employing the idea of contradictoriness. This law exhibits a kind of
symmetry that is found also in the laws  for ⊤ and ⊥ stated in
terms of relative exhaustiveness. Their symmetry can also be seen
as one instance of a relation of duality  that we will encounter in
other cases as well.
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1.4.x. Exercise questions

1. Restate each of the following claims about logical properties
and relations, putting into symbolic notation those stated in
English and into English those stated in symbolic notation:

 a. φ, ψ ⇒ χ
 b. φ is entailed by ψ
 c. φ ⇔ φ
 d. ψ ⇒

 e. φ is inconsistent with Γ
 f. φ is entailed by the members of Γ together with ψ
2. The following steps lead you to construct a proof of the law

for lemmas

if Γ,φ ⇒ ψ and Γ  ⇒ φ, then Γ  ⇒ ψ
Begin by supposing that Γ, φ ⇒ ψ and Γ  ⇒ φ are both true.
We want to show that, under this supposition, Γ ⇒ ψ is also
true. To do that, we consider any possible world w in which
all members of Γ  are true and try to show that ψ is true in
w.

 a. Our supposition that Γ, φ ⇒ ψ and Γ  ⇒ φ are both true
combined with what we know about w enables us to
conclude that φ is true. Why?

 b. Adding the information that φ is true in Γ  to what we
already knew, we can conclude that ψ is true. Why?

 So, knowing about w only that all members of Γ  were true,
we are able to conclude that ψ is true. And that shows us
that ψ is true in every world in which all members of Γ are
true, which means that Γ ⇒ ψ.

 Another approach to proving the law is to show that Γ  ⇒ ψ
fails only if at least one of Γ, φ ⇒ ψ and Γ  ⇒ φ fails. The
following three steps show this:

 c. Suppose that w is a counterexample to Γ  ⇒ ψ. What
truth values do ψ and the members of Γ  have in w?

 d. What truth values are needed to have a counterexample
to Γ  ⇒ φ? To have a counterexample to Γ, φ ⇒ ψ?



 e. The world w from c will be a counterexample to either 
Γ, φ ⇒ ψ or Γ  ⇒ φ. Why?
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1.4.xa. Exercise answers

1. a. φ and ψ together entail χ
 b. ψ ⇒ φ
 c. φ is equivalent to itself

 d. ψ is absurd 
or: ψ taken by itself forms an inconsistent set

 e. Γ, φ ⇒ 
or: Γ, φ ⇒ ⊥ 
(Strictly speaking, Γ, φ ⇒ ⊥ expresses entailment
rather than inconsistency, but it is true if and only if φ
is inconsistent with Γ.)

 f. Γ, ψ ⇒ φ
2. a. We have supposed that Γ  ⇒ φ. That is, we have

supposed that φ is T in any possible world in which all
members of Γ  are T. But w is a world in which all
members of Γ  are T, so φ, too, must be T in w.

 b. We now know that φ and all members of Γ  are T in w.
But we supposed that Γ, φ ⇒ ψ and we now know that
all the premises of this entailment are T in w, so ψ also
must be T also.

 c. For w to be a counterexample to Γ ⇒ ψ, it must make
give ψ the value F and give all the members of Γ  the
value T.

 d. A counterexample to Γ  ⇒ φ must give φ the value F
and give all the members of Γ  the value T. A
counterexample to Γ, φ ⇒ ψ must give ψ the value F
while giving φ and all the members of Γ  the value T.

 e. We know that w gives ψ the value F and gives all the
members of Γ  the value T. But it also must make φ
either T or F. If it does the former, it is a
counterexample to Γ, φ ⇒ ψ; and if it does the latter, it
is a counterexample to Γ  ⇒ φ.
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