1.4.xa. Exercise answers

- **1. a.** ϕ and ψ together entail χ
 - **b.** $\Psi \Rightarrow \varphi$
 - **c.** φ is equivalent to itself
 - **d.** ψ is absurd *or*: ψ taken by itself forms an inconsistent set
 - **e.** Γ, φ ⇒ *or*: Γ, φ ⇒ ⊥
 (Strictly speaking, Γ, φ ⇒ ⊥ expresses entailment rather than inconsistency, but it is true if and only if φ is inconsistent with Γ.)
 - **f.** $\Gamma, \psi \Rightarrow \varphi$
- **a.** We have supposed that Γ ⇒ φ. That is, we have supposed that φ is **T** in any possible world in which all members of Γ are **T**. But *w* is a world in which all members of Γ are **T**, so φ, too, must be **T** in *w*.
 - **b.** We now know that φ and all members of Γ are **T** in *w*. But we supposed that Γ , $\varphi \Rightarrow \psi$ and we now know that all the premises of this entailment are **T** in *w*, so ψ also must be **T** also.
 - **c.** For *w* to be a counterexample to $\Gamma \Rightarrow \psi$, it must make give ψ the value **F** and give all the members of Γ the value **T**.
 - **d.** A counterexample to $\Gamma \Rightarrow \varphi$ must give φ the value **F** and give all the members of Γ the value **T**. A counterexample to Γ , $\varphi \Rightarrow \psi$ must give ψ the value **F** while giving φ and all the members of Γ the value **T**.
 - **e.** We know that w gives ψ the value **F** and gives all the members of Γ the value **T**. But it also must make φ either **T** or **F**. If it does the former, it is a counterexample to Γ , $\varphi \Rightarrow \psi$; and if it does the latter, it is a counterexample to $\Gamma \Rightarrow \varphi$.