1.4.x. Exercise questions

- 1. Restate each of the following claims about logical properties and relations, putting into symbolic notation those stated in English and into English those stated in symbolic notation:
 - **a.** $\phi, \psi \Rightarrow \chi$
 - **b.** ϕ is entailed by ψ
 - $\mathbf{c.} \quad \boldsymbol{\varphi} \Leftrightarrow \boldsymbol{\varphi}$
 - **d.** ψ ⇒
 - **e.** φ is inconsistent with Γ
 - **f.** ϕ is entailed by the members of Γ together with ψ
- **2.** The following steps lead you to construct a proof of the law for lemmas

if $\Gamma, \phi \Rightarrow \psi$ and $\Gamma \Rightarrow \phi$, then $\Gamma \Rightarrow \psi$

Begin by supposing that Γ , $\varphi \Rightarrow \psi$ and $\Gamma \Rightarrow \varphi$ are both true. We want to show that, under this supposition, $\Gamma \Rightarrow \psi$ is also true. To do that, we consider any possible world *w* in which all members of Γ are true and try to show that ψ is true in *w*.

- **a.** Our supposition that Γ , $\phi \Rightarrow \psi$ and $\Gamma \Rightarrow \phi$ are both true combined with what we know about *w* enables us to conclude that ϕ is true. Why?
- **b.** Adding the information that φ is true in Γ to what we already knew, we can conclude that ψ is true. Why?

So, knowing about w only that all members of Γ were true, we are able to conclude that ψ is true. And that shows us that ψ is true in every world in which all members of Γ are true, which means that $\Gamma \Rightarrow \psi$.

Another approach to proving the law is to show that $\Gamma \Rightarrow \psi$ fails only if at least one of Γ , $\phi \Rightarrow \psi$ and $\Gamma \Rightarrow \phi$ fails. The following three steps show this:

- **c.** Suppose that *w* is a counterexample to $\Gamma \Rightarrow \psi$. What truth values do ψ and the members of Γ have in *w*?
- **d.** What truth values are needed to have a counterexample to $\Gamma \Rightarrow \phi$? To have a counterexample to $\Gamma, \phi \Rightarrow \psi$?

e. The world *w* from **c** will be a counterexample to either $\Gamma, \phi \Rightarrow \psi$ or $\Gamma \Rightarrow \phi$. Why?

Glen Helman 25 Aug 2005