Phi 270 F99 test 4

Analyze the following sentences in as much detail as possible, providing a key to the non-logical vocabulary (upper and lower case letters) appearing in your answer.

1. Sam invited every vertebrate to the party, but only people accepted his invitation

[answer]

- **2.** Tom didn't send anything to the printer [answer]
- **3.** *No game that every child liked was complete* [answer]

Synthesize an English sentence whose analysis would yield the following form.

4. $(\forall x: Px) (\forall y: Ry \land Txy) Sy$

[P: λx (x *is a person*); R: λx (x *is a room*); S: λx (x *was reserved*); T: λxy (x *thought of* y)]

[answer]

Use derivations to establish the validity of the following arguments. You may use attachment rules.

- 5. $\frac{\forall x \ (Fx \to Gx)}{\forall x \ Fx \to \forall x \ Gx}$ [answer]
- 6. $\forall x (\forall y: Fyx) \neg Py$ $(\forall x: Px) \forall y \neg Fxy$ [answer]
- **7.** Use a derivation to show that the following argument is not valid and describe a structure (by using either a diagram or tables) that divides one of the derivation's open gaps.

$$\begin{array}{c} \forall x \ (\forall y: Fy) \neg Rxy \\ \hline \forall x \ Rxx \\ \hline \forall x \ \forall y \neg Rxy \\ \hline answer \end{bmatrix}$$

Phi 270 F99 test 3 answers

1. Sam invited every vertebrate to the party, but only people accepted his invitation

Sam invited every vertebrate to the party \land only people accepted Sam's invitation

every vertebrate is such that (Sam invited it to the party) \land only people are such that (they accepted Sam's invitation)

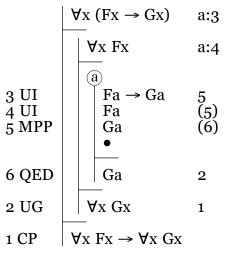
- (∀x: x is a vertebrate) <u>Sam</u> invited x to the party ∧ (∀x:¬ x is a person) ¬ x accepted <u>Sam's invitation</u>
- $(\forall x: Vx)$ Isxp \land $(\forall x:\neg Px) \neg$ Ax $(\underline{Sam}'s invitation)$

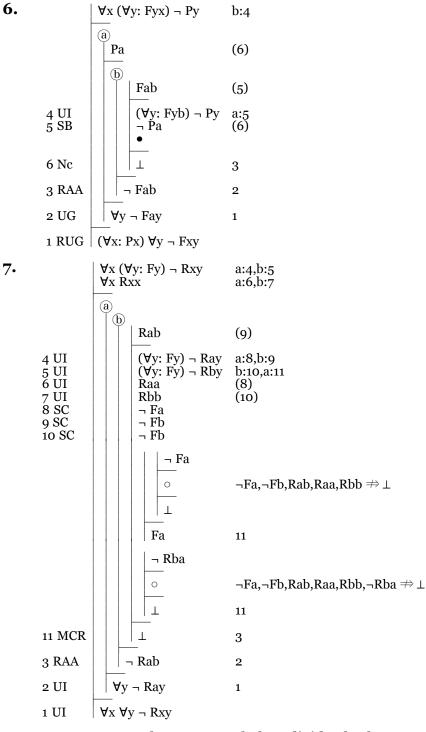
 $(\forall x: Vx)$ Isxp \land $(\forall x: \neg Px) \neg$ Ax(is)

[A: λxy (x accepted y); I: λxyz (x invited y to z); P: λx (x is a person); V: λx (x is a vertebrate); i: λx (x 's invitation); p: the party; s: Sam]

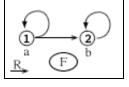
2. Tom didn't send anything to the printer everything is such that (Tom didn't send it to the printer)
∀x Tom didn't send x to the printer
∀x ¬ Tom sent x to the printer

[S: λxyz (x *sent* y to z); p: *the printer*; t: *Tom*]


3. No game that every child liked was complete No game that every child liked is such that (it was complete) (∀x: x was a game that every child liked) ¬ x was complete (∀x: x was a game ∧ every child liked x) ¬ Cx (∀x: x was a game ∧ every child is such that (he or she liked x)) ¬ Cx (∀x: Gx ∧ (∀y: y was a child) y liked x) ¬ Cx (∀x: Gx ∧ (∀y: y was a child) y liked x) ¬ Cx [C: λx (x was complete); D: λx (x was a child); G: λx (x was a game); L: λxy (x liked y)]


4. (∀x: x is a person) (∀y: y is a room ∧ x thought of y) y was reserved (∀x: x is a person) (∀y: y is a room x thought of) y was reserved (∀x: x is a person) every room x thought of was such that (it was reserved)

(∀x: x is a person) every room x thought of was reserved everyone is such that (every room he or she thought of was reserved)


every room anyone thought of was reserved

