Phi 270 F05

5.4.s. Summary

5.4.1. The law for the conditional as a premise applies only to *reductio* arguments and provides a way of rejecting a conditional by deriving its antecedent φ from the premises and reducing its consequent to absurdity given the premises. The corresponding derivation rule is Rejecting а Conditional (RC).

5.4.2. This rule reflects the fact that a conditional is false when its antecedent is true and its consequent is false. The rules of Weakening (Wk) that have conditionals as conclusions reflect the fact that a conditional is true if its consequent is and also if its antecedent is false.

With these rules,	the system	of derivations	for truth	functional	logic
is complete.	-				-

Rules for developing gaps		Rules for closing gaps			
	for resources	for goals	when to close		
atomic sentence		IP	the goal is also a resource		
negation ¬φ	$(\text{if } \varphi \text{ is not atomic})$	RAA	sentences ϕ and $\neg \ \phi$ are resources & the goal is \bot		
' and the goal is \perp)		op is the goal			
$\phi \wedge \Psi$	Ext	Cnj	1	⊥ is a reso	ource
disjunction	PC	PE		Attachment r	ules
<u>ψνψ</u>	DC	_		added resource	rule
$\phi \rightarrow \psi$	(if the goal is \perp)	\mathbf{CP}		φ∧ψ	Adj
Detachment rules (optional)			$\phi \to \psi$	Wk	
main resour	ce auxiliary resource	rule		φνψ	Wk
$\phi \to \psi$	φ	MPP		¬ (φ ∧ ψ)	Wk
	Ψ	MTT	Rule for lemm		nas
φνψ	φ or ψ	MTP		prerequisite	rule
¬ (φ ∧ ψ)) φorψ	MPT	l	the goal is \bot	LFR

ivati	ons for trut	h-fui	nctior	nal log
	Rules for closin	g gaps		
	when to	rule		
sente resou	ences φ and ¬ φ irces & the goal	are is ⊥	Nc	
\top is the goal			ENV	Deeie
⊥ is a resource			EFQ	system
	Attachment r		Added rules	
	added resource	rule		optional
	φ∧ψ	Adj	_	
	$\phi \to \psi$	Wk	_	
	φνψ	Wk		
	¬ (φ ∧ ψ)	Wk		

5.4.x. Exercise questions

- 1. Use derivations to check each of the claims below; if a derivation indicates that a claim fails, present a counterexample that divides an open gap. Since **d** is a claim of tautologousness, it is established by a derivation that begins with only a goal and no initial premises.
 - **a.** $A \rightarrow B \Leftrightarrow \neg A \lor B$
 - h. $(A \land B) \rightarrow C \Leftrightarrow A \rightarrow C$
 - $(A \rightarrow B) \land (B \rightarrow C) \Leftrightarrow A \rightarrow C$ c.
 - **d.** \Rightarrow ((A \rightarrow B) \rightarrow A) \rightarrow A
- 2. Construct derivations for each of the following. These exercises are designed to make attachment rules often useful. The derivations can be constructed for the English sentences in e-g without first analyzing them since you generally need to recognize only the main connective and the immediate connectives in order to know what rules apply; however, the abbreviated notation provided by an analysis may be more convenient.
 - $(A \land B) \rightarrow C, (C \lor D) \rightarrow E, A, B \Rightarrow E$ a.
 - $(A \lor \neg B) \rightarrow C \Rightarrow \neg C \rightarrow B$ b.
 - \neg (A \land B), B \lor C, D $\rightarrow \neg$ C \Rightarrow A $\rightarrow \neg$ D c.
 - $C \rightarrow \neg (A \lor B), E \lor \neg (D \land \neg C), D \Rightarrow A \rightarrow E$ d.
 - e. Tom will go through Chicago and visit Sue Tom won't go through both Chicago and Indianapolis Tom won't visit Ursula without going through Indianapolis Tom will visit Sue but not Ursula
 - f. Either we spend a bundle on television or we won't have wide public exposure

If we spend a bundle on television, we'll go into debt Either we have wide public exposure or our contributions will dry up We'll go into debt if our contributions dry up and we don't have large reserves

We won't have large reserves We'll go into debt

g. If Adams supports the plan, it will go though provided Brown doesn't oppose it

Brown won't oppose the plan if either Collins or Davis supports it The plan will go through if both Adams and Davis support it

Homework assigned Mon 10/17 and due Wed 10/19

Use derivations to check the following, checking it twice, once without using attachment rules and once using them:

 $(A \rightarrow B) \rightarrow (C \land D) \Rightarrow B \rightarrow (C \lor E)$

