A.4. Derivation rules

Basic system

Rules for developing gaps
for resources for goals
atomic
sentence
  IP
negation
¬ φ
CR
(if φ not atomic
& goal is ⊥)
RAA
conjunction
φ ∧ ψ
Ext Cnj
disjunction
φ ∨ ψ
PC PE
conditional
φ → ψ
RC
(if goal is ⊥)
CP
universal
∀x θx
UI UG
restricted universal
(∀x: ρx) θx
MCR
(if goal is ⊥)
RUG
existential
∃x θx
PCh NcP
restricted existential
(∃x: ρx) θx
PRCh RNcP
An alternative approach for restricted quantifiers, both universal and existential is to use rules for transforming those forms to and from forms using unrestricted quantifiers. These rules are RUP and RUC for the restricted universal and REP and REC for the restricted existential.
Rules for closing gaps
when to close rule
co-aliases resources goal  
  φ φ QED
φ and ¬ φ Nc
    ENV
    EFQ
τ=υ   τ = υ EC
τ=υ ¬ τ = υ DC
τ11, ..., τnn 1...τn 1...υn QED=
τ11, ..., τnn 1...τn
¬ Pυ1...υn
Nc=
Detachment rules (optional)
required resources rule
main auxiliary
φ → ψ φ MPP
ψ MTT
φ ∨ ψ φ or ψ MTP
¬ (φ ∧ ψ) φ or ψ MPT
(∀x: ρx) θx ρτ SB
θτ SC

In addition, if the conditions for meeting a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

Additional rules (not guaranteed to be progressive)

Attachment rules
added resource rule
φ ∧ ψ Adj
φ → ψ Wk
φ ∨ ψ Wk
¬ (φ ∧ ψ) Wk
τ = υ CE
θυ1...υn Cng
∃x θx EG
(∃x: ρx) θx REG
Rule for lemmas
prerequisite rule
the goal is ⊥ LFR

Diagrams

Rules from chapter 2

Extraction (Ext)

│...
│φ ∧ ψ
│...
││...
││
││
││
││...
│...
rule arrow
│...
│φ ∧ ψ n
│...
││...
n Ext ││φ
n Ext ││ψ
││
││...
│...

Conjunction (Cnj)

│...
││...
││
││
││
││
││
││
││
││
││
│├─
││φ ∧ ψ
│...
rule arrow
│...
││...
││
││
││
││├─
│││φ n
││
││
││
││├─
│││ψ n
│├─
n Cnj││φ ∧ ψ
│...

Quod Erat Demonstrandum (QED)

│...
│φ [available]
│...
││...
││
│├─
││φ
│...
rule arrow
│...
│φ (n)
│...
││...
││
│├─
n QED ││φ
│...

Ex Nihilo Verum (ENV)

│...
││...
││
│├─
││⊤
│...
rule arrow
│...
││...
││
│├─
n ENV ││⊤
│...

Ex Falso Quodlibet (EFQ)

│...
│⊥
│...
││...
││
│├─
││φ
│...
rule arrow
│...
│⊥ (n)
│...
││...
││
│├─
n EFQ ││φ
│...

Adjunction (Adj)

│...
│φ [available]
│...
│ψ [available]
│...
││...
││
││
││
││
│├─
││θ
│...
rule arrow
│...
│φ (n)
│...
│ψ (n)
│...
││...
n Adj ││φ ∧ ψX
││
││
││
│├─
││θ
│...

Lemma for Reductio (LFR)

│...
││...
││
││
││
││
││
││
││
││
││
││
││
│├─
││⊥
│...
rule arrow
│...
││...
││
││
││
││├─
│││φ n
││
│││φ
││├─
││
││
││├─
│││⊥ n
│├─
n LFR││⊥
│...

Rules from chapter 3

Indirect Proof (IP)

│...
││...
││
││
││
││
││
││
│├─
││φ [atomic]
│...
rule arrow
│...
││...
││
│││¬ φ
││├─
││
││├─
│││⊥ n
│├─
n IP ││φ
│...

Completing the Reductio (CR)

│...
│¬ φ [φ is not atomic]
│...
││...
││
││
││
││
││
│├─
││⊥
│...
rule arrow
│...
│¬ φ n
│...
││...
││
││
││
││├─
│││φ n
│├─
n CR ││⊥
│...

Reductio ad Absurdum (RAA)

│...
││...
││
││
││
││
││
││
│├─
││¬ φ
│...
rule arrow
│...
││...
││
│││φ
││├─
││
││├─
│││⊥ n
│├─
n RAA ││¬ φ
│...

Non-contradiction (Nc)

│...
│¬ φ [available]
│...
│φ [available]
│...
││...
││
│├─
││⊥
│...
rule arrow
│...
│¬ φ (n)
│...
│φ (n)
│...
││...
││
│├─
n Nc ││⊥
│...

Rules from chapter 4

Proof by Cases (PC)

│...
│φ ∨ ψ
│...
││...
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││χ
│...
rule arrow
│...
│φ ∨ ψ n
│...
││...
││
│││φ
││├─
││
││├─
│││χ n
││
│││ψ
││├─
││
││├─
│││χ n
│├─
n PC ││χ
│...

Proof of Exhaustion (PE)

│...
││...
││
││
││
││
││
││
│├─
││φ ∨ ψ
│...
rule arrow
│...
││...
││
││φ
││├─
││
││├─
│││ψ n
│├─
n PE ││φ ∨ ψ
│...
OR
│...
││...
││
││ψ
││├─
││
││├─
│││φ n
│├─
n PE ││φ ∨ ψ
│...

Modus Tollendo Ponens (MTP)

φ [available]
│...
│φ ∨ ψ
│...
││...
││
││
│├─
││χ
│...
rule arrow
φ (n)
│...
│φ ∨ ψ n
│...
││...
n MTP ││ψ
││
│├─
││χ
│...
 
ψ [available]
│...
│φ ∨ ψ
│...
││...
││
││
│├─
││χ
│...
rule arrow
ψ (n)
│...
│φ ∨ ψ n
│...
││...
n MTP ││φ
││
│├─
││χ
│...

Modus Ponendo Tollens (MPT)

│φ [available]
│...
│¬ (φ ∧ ψ)
│...
││⋯
││
││
│├─
││θ
│...
rule arrow
│φ (n)
│...
│¬ (φ ∧ ψ) n
│...
││⋯
n MPT ││ψ
││
│├─
││θ
│...
 
│ψ [available]
│...
│¬ (φ ∧ ψ)
│...
││⋯
││
││
│├─
││θ
│...
rule arrow
│ψ (n)
│...
│¬ (φ ∧ ψ) n
│...
││⋯
n MPT ││φ
││
│├─
││θ
│...

Weakening (Wk)

│...
│φ [available]
│...
││...
││
││
│├─
││θ
│...
rule arrow
│...
│φ (n)
│...
││...
n Wk ││φ ∨ ψ X
││
│├─
││θ
│...
 
│...
│ψ [available]
│...
││...
││
││
│├─
││θ
│...
rule arrow
│...
│ψ (n)
│...
││...
n Wk ││φ ∨ ψ X
││
│├─
││θ
│...

Weakening (Wk)

│⋯
φ [available]
│...
││...
││
││
│├─
││θ
│...
│⋯
φ (n)
│...
││...
n Wk ││¬ (φ ∧ ψ) X
││
│├─
││θ
│...
 
│⋯
ψ [available]
│...
││...
││
││
│├─
││θ
│...
│⋯
ψ (n)
│...
││...
n Wk ││¬ (φ ∧ ψ) X
││
│├─
││θ
│...

Rules from chapter 5

Rejecting a Conditional (RC)

│...
│φ → ψ
│...
││...
││
││
││
││
││
││
││
││
││
││
││
│├─
││⊥
│...
rule arrow
│...
│φ → ψ n
│...
││...
││
││
││
││├─
│││φ n
││
│││ψ
││├─
││
││├─
│││⊥ n
│├─
n RC ││⊥
│...

Conditional Proof (CP)

│...
││...
││
││
││
││
││
││
│├─
││φ → ψ
│...
rule arrow
│...
││...
││
│││φ
││├─
││
││├─
│││ψ n
│├─
n CP ││φ → ψ
│...

Modus Ponendo Ponens (MPP)

│φ [available]
│...
│φ → ψ
│...
││...
││
││
│├─
││θ
│...
rule arrow
│φ (n)
│...
│φ → ψ n
│...
││...
││ψ
││
│├─
n MPP ││θ
│...

Modus Tollendo Tollens (MTT)

ψ [available]
│...
│φ → ψ
│...
││⋯
││
││
│├─
││θ
│...
rule arrow
ψ (n)
│...
│φ → ψ n
│...
││⋯
││φ
││
│├─
n MTT ││θ
│...

Weakening (Wk)

│ψ [available]
│...
││...
││
││
│├─
││θ
│...
rule arrow
│ψ (n)
│...
││...
n Wk ││φ → ψ X
││
│├─
││θ
│...

Weakening (Wk)

φ [available]
│...
││...
││
││
│├─
││θ
│...
rule arrow
φ (n)
│...
││...
n Wk ││φ → ψ X
││
│├─
││θ
│...

Rules from chapter 6

Equated Co-aliases (EC)

│...
│[τ and υ are co-aliases]
│...
││...
││
│├─
││τ = υ
│...
│...
│[τ and υ are co-aliases]
│...
││...
││
│├─
n EC ││τ = υ
│...

Distinguished Co-aliases (DC)

│...
│[τ and υ are co-aliases]
│...
│¬ τ = υ
│...
││...
││
│├─
││⊥
│...
│...
│[τ and υ are co-aliases]
│...
│¬ τ = υ (n)
│...
││...
││
│├─
n DC ││⊥
│...

QED given equations (QED=)

│...
│[<τ> and <υ> are co-alias series]
│...
│P<τ>
│...
││...
││
│├─
││P<υ>
│...
│...
│[<τ> and <υ> are co-alias series]
│...
│P<τ> (n)
│...
││...
││
│├─
n QED= ││P<υ>
│...

(Notation: <τ> is a series of terms τ1, ..., τn. Two such series are co-alias series when they have the same length and their corresponding members are co-aliases. P<τ> is the predication Pτ1...τn.)

Non-contradiction given equations (Nc=)

│...
│[<τ> and <υ> are co-alias series]
│...
│¬ P<τ>
│...
│P<υ>
│...
││...
││
│├─
││⊥
│...
│...
│[<τ> and <υ> are co-alias series]
│...
│¬ P<τ> (n)
│...
│P<υ> (n)
│...
││...
││
│├─
n Nc= ││⊥
│...

(Notation: <τ> is a series of terms τ1, ..., τn. Two such series are co-alias series when they have the same length and their corresponding members are co-aliases. P<τ> is the predication Pτ1...τn.)

Co-alias Equation (CE)

│...
│[τ and υ are co-aliases]
│...
││...
││
││
│├─
││φ
│...
│...
│[τ and υ are co-aliases]
│...
││...
n CE ││τ = υ X
││
│├─
││φ
│...

Congruence (Cng)

│...
│[<τ> and <υ> are co-alias series]
│...
│θ<τ>
│...
││...
││
││
│├─
││φ
│...
│...
│[<τ> and <υ> are co-alias series]
│...
│θ<τ> (n)
│...
││...
n Cng ││θ<υ> X
││
│├─
││φ
│...

(Notation: <τ> is a series of terms τ1, ..., τn. Two such series are co-alias series when they have the same length and their corresponding members are co-aliases. θ<τ> and θ<υ> are sentences which differ only by corresponding members of the series <τ> and <υ>.)

Rules from chapter 7

Universal Instantiation (UI)

│...
│∀x ...x...
│...
││...
││
││
│├─
││φ
│...
│...
│∀x ...x... τ:n
│...
││...
n UI ││...τ...
││
│├─
││φ
│...

Universal Generalization (UG)

│...
││...
││
││
││
││
│├─
││∀x ...x...
│...
│...
││...
││
││
││├─
│││...a... n
│├─
n UG ││∀x ...x...
│...

Making a Counterexample for Reductio (MCR)

│⋯
│(∀x: ρx) θx
│⋯
││⋯
││
││
││
││
││
││
││
││
││
│├─
││⊥
│⋯
│⋯
│(∀x: ρx) θx τ:n
│⋯
││⋯
││
││├─
│││ρτ n
││
│││θτ
││├─
││
││├─
│││⊥ n
│├─
n MCR ││⊥
│⋯

Restricted Universal Generalization (RUG)

│⋯
││⋯
││
││
││
││
││
││
│├─
││(∀x: ρx) θx
│⋯
│⋯
││⋯
││
│││ρa
││├─
││
││├─
│││θa n
│├─
n RUG ││(∀x: ρx) θx
│⋯

Singular Barbara (SB)

│⋯
│(∀x: ρx) θx
│⋯
│ρτ
│⋯
││⋯
││
││
│├─
││φ
│⋯
│⋯
│(∀x: ρx) θx τ:n
│⋯
│ρτ (n)
│⋯
││⋯
n SB ││θτ
││
│├─
││φ
│⋯

Singular Camestres (SC)

│⋯
│(∀x: ρx) θx
│⋯
θτ
│⋯
││⋯
││
││
││⋯
│⋯
│⋯
│(∀x: ρx) θx τ:n
│⋯
θτ (n)
│⋯
││⋯
n SC ││ρτ
││
││⋯
│⋯

Restricted Universal Premise (RUP)

│⋯
│(∀x: ρx) θx
│⋯
││⋯
││
││
│├─
││φ
│⋯
│⋯
│(∀x: ρx) θx n
│⋯
││⋯
n RUP ││∀x (ρx → θx)
││
│├─
││φ
│⋯

Restricted Universal Conclusion (RUC)

│⋯
││⋯
││
││
││
││
│├─
││(∀x: ρx) θx
│⋯
│⋯
││⋯
││
││
││├─
│││∀x (ρx → θx) n
│├─
n RUC ││(∀x: ρx) θx
│⋯

Rules from chapter 8

Proof by Choice (PCh)

│⋯
│∃x θx
│⋯
││⋯
││
││
││
││
││
││
│├─
││φ
│...
│⋯
│∃x θx n
│⋯
││⋯
││
│││θa
││├─
││
││├─
│││φ n
│├─
││φ
n PCh │...

Non-constructive Proof (NcP)

│⋯
││⋯
││
││
││
││
││
│├─
││∃x θx
│...
│⋯
││⋯
│││∀x θx
││├─
││
││├─
│││⊥ n
│├─
││∃x θx
n NcP │...

Existential Generalization (EG)

│⋯
│θτ
│⋯
││⋯
││
││
│├─
││φ
│...
│⋯
│θτ n
│⋯
││⋯
n EG ││∃x θx X
││
│├─
││φ
│...

Proof by Restricted Choice (PRCh)

│⋯
│(∃x: ρx) θx
│⋯
││⋯
││
││
││
││
││
││
││
│├─
││φ
│...
│⋯
│(∃x: ρx) θx n
│⋯
││⋯
││
│││ρa
│││θa
││├─
││
││├─
│││φ n
│├─
││φ
n PRCh │...

Restricted Non-constructive Proof (RNcP)

│⋯
││⋯
││
││
││
││
││
│├─
││(∃x: ρx) θx
│...
│⋯
││⋯
│││(∀x: ρx) θx
││├─
││
││├─
│││⊥ n
│├─
n RNcP ││(∃x: ρx) θx
│...

Restricted Existential Generalization (REG)

│⋯
│ρτ
│⋯
│θτ
│⋯
││⋯
││
││
│├─
││φ
│...
│⋯
│ρτ
│⋯
│θτ
│⋯
││⋯
n REG ││(∃x: ρx) θx X
││
│├─
││φ
│...

Restricted Existential Premise (REP)

│⋯
│(∃x: ρx) θx
│⋯
││⋯
││
││
│├─
││φ
│⋯
│⋯
│(∃x: ρx) θx n
│⋯
││⋯
n REP ││∃x (ρx ∧ θx)
││
│├─
││φ
│⋯

Restricted Existential Conclusion (REC)

│⋯
││⋯
││
││
││
││
│├─
││(∃x: ρx) θx
│⋯
│⋯
││⋯
││
││
││├─
│││∃x (ρx ∧ θx) n
│├─
n REC ││(∃x: ρx) θx
│⋯
   
│⋯
│∃x (ρx ∧ θx)
│⋯
││⋯
││
││
│├─
││φ
│⋯
│⋯
│∃x (ρx ∧ θx) n
│⋯
││⋯
n REC ││(∃x: ρx) θx X
││
│├─
││φ
│⋯
Glen Helman 01 Aug 2004