|
Ix Wx: 2
| │(∃x: Ax) Wx | 1 |
| │¬ ∃x (∃y: ¬ y = x) (Wx ∧ Wy) | (11) |
| ├─ | |
| │ⓐ | |
| ││Aa | (4), (5) |
| ││Wa | (3), (8) |
| │├─ | |
| ││ⓑ | |
| │││Wb | |
| │││(∀y: Wy) b = y | a:3 |
| │││Ix Wx = b | a, b—IxWx, ∗ |
| ││├─ | |
3 SB | │││b = a | a—b—(IxWx), ∗ |
| │││● | |
| ││├─ | |
4 QED= | │││A(Ix Wx) | 2 |
| ││ | |
| │││(∀x: Wx) (∃y: Wy) ¬ x = y | a:5 |
| │││Ix Wx = ∗ | a, c, (IxWx)—∗ |
| ││├─ | |
5 SB | │││(∃y: Wy) ¬ a = y | 6 |
| │││ | |
| │││ⓒ | |
| ││││Wc | (8) |
| ││││¬ a = c | (9) |
| │││├─ | |
| │││││¬ A(Ix Wx) | |
| ││││├─ | |
8 Adj | │││││Wc ∧ Wa | X, (9) |
9 REG | │││││(∃y: ¬ y = c) (Wc ∧ Wy) | X, (10) |
10 EG | │││││∃x (∃y: ¬ y = x) (Wx ∧ Wy) | X, (11) |
| │││││● | |
| ││││├─ | |
11 Nc | │││││⊥ | |
| │││├─ | |
7 UP | ││││A(Ix Wx) | 6 |
| ││├─ | |
6 PRCh | │││A(Ix Wx) | 2 |
| │├─ | |
2 SD | ││A(Ix Wx) | 1 |
| ├─ | |
1 PRCh | │A(Ix Wx) | |
|