7.6.1. Principles for restricted universals

The laws for unrestricted universals as premises and as conclusions
were based on the relation between a generalization and its instances. In
the case of restricted universals, we will also be interested in
instantiation, but an unrestricted universal (Vx: px) 6x does not in
general imply an instance Ot. Still, since (Vx: px) 6x < Vx (px — 6x),
the restricted universal will imply the sentences pt — 6t that are the
instances of its restatement in unrestricted form; we will call these its
conditioned instances. If we expand the language by the range R of
a structure, a restricted universal (Vx: px) 6x will be true in that
structure if and only if all its conditioned instances are true. That means
that a restricted universal behaves like a conjunction of its conditioned
instances, and its role in deductive reasoning is analogous in some
respects to the role of an unrestricted universal and in other respects to
the role of a conditional.

We can get laws for the restricted universal by restating such a universal
in unrestricted form and applying laws for both the unrestricted
universal and the conditional. To get our law for the restricted
universal as a conclusion, we can reason as follows for any term a
that does not appear in I or (Vx: px) 0x:

I' = (Vx: px) 0x
if and only if

I' = Vx (px — 6x) restatement with an unrestricted quantifier
if and only if
I' = pa — 0a by the law for a universal as a conclusion
if and only if
I, pa = 0a by the law for a conditional as a conclusion

That is, we can conclude a restricted universal if and only if we can
conclude its instance 6a for a parametric term a, allowing ourselves to
make the assumption that pa—i.e., that the value of the term a is in the
domain of the universal. The assumption here that pa is comparable to
the assumption that ABC is a triangle which is made when we wish to
offer an argument about ABC as a basis for a generalization about all
triangles.

We can approach the role of (Vx: px) 6x as a premise also by way of a
restatement in unrestricted form. If we apply the law for an unrestricted
universal premise and restate the result again using a restricted
quantifier, we get, for any term r,

I, (Vx: px) 6x = ¢ if and only if T, (Vx: px) 0%, pt — 6t = ¢



To go further, we need to take account of the conditional premise we
have introduced. We have three ways of doing this, two detachment
principles, each of which requires still another premise, and a principle
for reductio arguments. Accordingly, we get three principles for a
restricted universal premise each applying to a different sort of case:

I, (Vx: px) 6x, pt=¢ ifand onlyif T, (Vx: px) 0%, pt, Ot = ¢

T, (Vx: px) 0x, 0t = ¢ fand only if T, (Vx: px) 0%, Ot, pt = ¢

I, (Vx: px) 6x = L if and only if both T, (Vx: px) 6x = pt
and I, (Vx: px) 6%, 6t = L

Each holds for any term .

The first two are related to the following valid forms of argument in the
way that the detachment rules for conditionals are related to the
argument patterns modus ponens and modus tollens.

Singular Barbara Singular Camestres
(Vx: px) Ox (Vx: px) 6x
pT Ot
ot E

The first argument provides a sort of restricted universal
instantiation. It is perhaps the most widely recognized pattern of
argument; an instance of it was our first example of a valid argument in
1.1.2 . In the logical tradition, it and the second pattern (which stands
to it as modus tollens stands to modus ponens) were often not
distinguished from certain patterns of argument whose second premises
and conclusions contain quantifier phrases rather than individual terms,
and the names used here are adapted from names for those arguments
in a medieval system of nomenclature for syllogisms. (Notice that vowels
in the names are the first vowels appearing in the English verbs affirm
and negate, which happen to be cognate to Latin terms, and that these
vowels mark the affirmative or negative character of the premises and
conclusion taken in order. Many of the consonants in these names are
also significant, pointing to connections among various patterns of
argument in the theory of syllogisms proper.)

The third principle for restricted universal conclusions says that we can
reduce a generalization (Vx: px) 0x to absurdity given T if and only if we
can use a term t to produce a counterexample to the generalization. We
try to establish this counterexample by doing two things—(i) showing
that the value of T is in the domain of the generalization and (ii)
reducing to absurdity the claim that the attribute of the generalization is
true of the value of t. The if part of this principle should be unsurprising



since a counterexample to a generalization is inconsistent with it. But
the full if-and-only-if claim may seem odd, since it implies that if one
term will serve as a counterexample, so will any other. It is true that
given premises might entail one counterexample to a generalization
without entailing others, but if premises entail both a counterexample
and and the generalization itself (as they certainly do if the
generalization is among them), they form an inconsistent set and entail
every sentence. Of course, we may be able to show that one term
provides a counterexample only by first showing that another one does.
Since, unlike the principles of Singular Barbara and Singular Camestres,
this principle applies to any reductio argument that has a generalization
as a premise, we will count it as our general law for the restricted
universal as a premise.

To summarize, we have the following basic principles for the restricted
universal:

Law for the restricted universal as a premise. For any term t, we
have:

I, (Vx: px) 6x = L if and only if both T, (Vx: px) 6x = pt and
I, (Vx: px) 6x, 0t = L.

Law for the unrestricted universal as a conclusion. For any
unanalyzed term a appearing in neither T nor (Vx: px) 0x, we
have:

I' = (Vx: px) 0x if and only if T, pa = 6a.

Although these two principles suffice to capture the logical properties of
restricted universals, rules implementing singular Barbara and singular
Camestres will play an important role in our system of derivations.



