
7.5. General arguments

7.5.0. Overview

We have answered questions about entailment concerning truth-
functional compounds by turning them into questions about their
immediate components (or sentences contradictory to them). The
largest component formulas of sentences formed by quantifiers usually
contain free variables, so we will look at the sentences that are the result
of putting closed terms in place of these variables.

7.5.1. Conjunction and universal quantification  
An unrestricted universal sentence behaves like a conjunction of
sentences saying of each particular thing what the universal says of
everything.

7.5.2. The role of generalizations in entailment  
The laws of entailment for unrestricted universals treat them as
conjunctions of their instances; but they differ from the laws for
conjunction itself in ways that reflect the fact that a universal has
indefinitely many instances and that they are all predications of the
same abstract.

7.5.3. Derivations for universals  
Because a universal has indefinitely many instances, we cannot
consider each in a derivation. Instead, we establish a universal by
arguing about a single “typical” instance, and we exploit a
generalization only partially to extract those instances that are relevant
to the argument we are considering.
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7.5.1. Conjunction and universal
quantification

The truth conditions of generalizations are analogous to those of
conjunctions. So, before looking at laws and rules for the universal
quantifiers, we will spend some time comparing these operations to
conjunction.

Consider the pair of sentences analyzed below.

Every permanent member of the Security Council supported the
resolution

(∀x: Mxs) Sxl

Britain, China, France, Russia, and the U. S. supported the resolution

Sbl ∧ Scl ∧ Sfl ∧ Srl ∧ Sul

[M: λxy (x is a member of y); S: λxy (x supported y); b: Britain; c:
China; f: France; l: the resolution; r: Russia; s: the Security Council; u:

the U. S.]

These two sentences have the same truth value, but they are not
equivalent because in a different possible world the membership of the
Security Council could be different. However, consider the sentence

Each of Britain, China, France, Russia, and the U. S. supported the
resolution

This could be analyzed in the same way as the second sentence above,
but it could be analyzed also as a restricted universal whose restricting
predicate is λx (x is Britain, China, France, Russia, or the U. S.)—
switching to or here for the same reasons that lead to us switch in
handling all boys and girls (see 7.3.2 ). A full analysis would give us
the following:

(∀x: x=b ∨ x=c ∨ x=f ∨ x=r ∨ x=u) Sxl

And this universal is equivalent to the conjunction because either way
we say that the predicate λx (x supported l) is true of the reference
values of b, c, f, r, and u.

Each of the universals (∀x: ρx) θx and ∀x θx says that the predicate θ is
true of each value in the domain over which it generalizes. Only in
special cases (like the example just above) will either be equivalent to a
conjunction



θτ1 ∧ θτ2 ∧ ... ∧ θτn

that predicates θ of each of a series of terms. But it can still be
enlightening to compare universals to such conjunctions, so we will
develop some vocabulary for doing so. In this section, we will do this
only for unrestricted universals, turning to the case of restricted
universals in 7.6 . Let us say that an instance for a term τ of a
universal ∀x θx is a sentence θτ that applies the quantified predicate θ
to τ—that is, an instance of a universal ∀x ... x ... has the form ... τ ...,
the result of putting τ in place of the occurrences of that variable x that
are bound to the quantifier ∀x. An instance asserts of a single reference
value what the universal asserts of everything in its domain.

If every reference value is the extension of some term, an unrestricted
universal ∀x θx will be true if and only if each of its instances θτ is true.
This means that it will behave like a conjunction of these instances. But
this is not we could work with such a conjunction in place of the
universal because, given just one unanalyzed term and one functor,
there will be infinitely many compound terms and infinitely many
instances of any universal whose quantifier actually binds a variable. For
example, given an unanalyzed term a and functor f, the language will
contain the terms

a, fa, f(fa), f(f(fa)), ...

and a universal ∀x Px will have the instances

Pa, P(fa), P(f(fa)), P(f(f(fa))), ...

Although it is possible to make sense of infinite conjunctions as part of a
mathematical structure if there is no expectation that it be possible to
write them down, our references to conjunctions of all instances will be
only a figure of speech used to motivate and guide our treatment.

For an unrestricted universal to behave like a conjunction of its
instances, every reference value must be the value of some term. So let
us develop the figure of speech further by imagining that the ID of each
reference value in a range R is added as a further term of our language.
We will speak of this operation as expansion by R. If we expand the
language by the range R of a structure, an unrestricted universal ∀x θx
will be true in that structure if and only if all its instances are true.
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7.5.2. The role of generalizations in
entailment

The special features of the laws we will state for the universals can be
traced to two sources. One is the analogy with conjunction we have just
explored. The other is a pair of differences between what we have said
about universals and what we may say about ordinary conjunctions. The
first difference lies in the fact that the principles of entailment for
universals must hold for all structures, so they cannot depend on special
assumptions about the range R of reference values. This means, in
particular, that the set of “components” of a universal (i.e., its instances
in an expansion by R) must be left indefinite while an ordinary
conjunction has a definite and, indeed, finite set of components. This
would make universals difficult to deal with were it not for their second
difference from conjunctions. The components of an ordinary
conjunction can be any pair of sentences so they need have nothing in
common, and we must consider them individually; but the instances of a
universal all follow the same pattern, differing only in occurrences of a
single term, so we can speak of them all together by speaking of this
pattern.

We will develop laws for universals by taking certain laws for
conjunctions as our model and modifying them to take account of the
differences just outlined. The laws for conjunction we will work from are
the following:

φ ∧ ψ ⇒ φ 
φ ∧ ψ ⇒ ψ 

Γ ⇒ φ ∧ ψ if and only if Γ ⇒ φ and Γ ⇒ ψ.

The last should be no surprise since it is our basic law for conjunction as
a conclusion but, although the first pair of principles are clearly
associated with the rule of Extraction, they are less far reaching than our
law for conjunction as a premise. Our use of these less general principles
is itself due to the differences between universals and conjunction: the
law for conjunction as a premise says we can replace a conjunction by its
components, but there is no hope of doing anything like this for a
universal since it has no one definite set of “components.”

What laws can we state for unrestricted universals that are analogous to
these laws for conjunction? The first pair of laws for conjunction noted
above together say that a conjunction implies each of its components.
The analogous claim about an unrestricted universal is that it implies
each of its instances. This is a principle known as universal



instantiation:

∀x θx ⇒ θτ for each term τ. (That is, ∀x ... x ... ⇒ ... τ ....)

For example, the sentence Everything is fine and dandy implies the
claim The number 2 is fine and dandy as well as other sentences of the
form τ is fine and dandy.

The principle of universal instantiation is not quite what we will take as
our account of the unrestricted universal as a premise. Universal
instantiation can be used along with the law of lemmas to develop a
derivation by adding any instance of a universal premise as a further
resource. And it is that use of universal instantiation that we call our
law for the unrestricted universal as a premise: for any term τ,
we have

Γ, ∀x θx ⇒ Σ if and only if Γ, ∀x θx, θτ ⇒ Σ.

That is, given a universal premise, we may add any instance as a further
premise. Note that the instance is added as a further premise. We
cannot drop the universal because we cannot expect its content to be
exhausted by a single instance; Everything is fine and dandy, for
example, has implications for things other than the number 2. As you
might expect, our inability to drop the universal from the premises will
some cause complications when we try to implement this law in
derivations.

Now let us look at the role of an unrestricted universal as a conclusion.
Here we have the law for conjunction as a conclusion to use as a model.
We have to expect changes, though, because that law gives separate
consideration to each of the two components of the conjunction and we
cannot expect to do this for the instances of a universal. Still, the law for
conjunction points us in the right direction: we should look for some
way of connecting the validity of a universal conclusion with the validity
of arguments having its instances as conclusions. A connection like this
is used in geometric proofs when we begin by saying, for example, “Let
ABC be a triangle,” and then go on to use our conclusions concerning
ABC to justify general conclusions about all triangles. That is, we
sometimes establish universal claims by generalizing from particular
instances of them.

Clearly not every generalization from a particular instance will be
legitimate. Certain premises may entail The Empire State Building is tall
without entailing Every building is tall. In a geometric argument
concerning a triangle ABC, we limit the information that we may use
about the instance that we are considering to what we may establish
concerning any triangle. For example, we ignore the fact we are using a

diagram that shows ABC as acute or obtuse, and we probably avoid
drawing it as a right triangle or an isosceles triangle to begin with.
These restrictions are sometimes expressed by saying that we are
arguing about an arbitrary or an arbitrarily chosen triangle. The idea is
that what you say about the triangle ABC should hold for a triangle
chosen at random or even one chosen by your worst enemy. Let us call
an argument like this a general argument since it argues for an
instance in a way that will hold generally for values in the domain of a
universal. The law we are looking for should say that an unrestricted
universal is a valid conclusion from given premises if we can establish
an instance of it by a general argument. But we need to make this more
precise.

In particular, we need to say how we can recognize a general argument
just by looking at the logical forms of the sentences it involves. If we
were to give instructions for making a general argument about a triangle
ABC, one thing we might say is that we should not use any special
assumptions about ABC. If we are going to generalize about triangles, we
may assume that ABC is a triangle but we should not assume that it is
acute or obtuse. This is just another way of saying that we should not
use special information about this triangle, but it suggests an idea we
can apply to arguments when we know only their logical forms.

Since we are considering arguments for unrestricted universals, we must
be able to generalize not just about triangles, or some other limited
class, but about everything; and that means we should use no
assumptions at all about the term from which we wish to generalize. So
we can say this: if we wish to generalize from an instance θτ to a
universal ∀x θx, the term τ should not appear in our assumptions. You
may have noticed a couple of jumps here. Saying we have an assumption
containing τ is different from saying we have used that assumption, and
saying that τ appears in an assumption is different from saying that the
assumption provides special information about τ. For example, The
number 2 is fine and dandy and so is everything else mentions the
number 2 without constituting a special assumption about it. Still, the
requirement that the term from which we generalize not appear in the
assumptions is easy to check and using it will not limit the entailments
we can establish, only the terms we can use to establish them.

This requirement is enough to rule out many unwarranted
generalizations but it does not exclude them all. To see why, suppose we
are arguing from the assumption Everything is like itself. One
conclusion we can draw is Wabash is like Wabash and, in doing so, we
have certainly used no special assumptions about Wabash. But this
conclusion says that Wabash has the property of being like Wabash and



that makes it an instance of the generalization Everything is like
Wabash. But generalizing to that conclusion is surely unwarranted. The
problem with this argument is that even though the term Wabash stands
in no special relation to the assumptions, it does stand in a special
relation to the universal conclusion Everything is like Wabash. In
particular, it plays a special role in the predicate that the conclusion
claims to be universal. These considerations suggest a second
requirement for a general argument: if we wish to generalize from an
instance θτ to a universal ∀x θx, the term τ should not appear in our
conclusion; that is, it should not appear in θ.

There remains only one sort of problem to consider. Suppose our
assumption is Everything has its bad side. We can conclude Wabash
has its bad side. But we cannot go on to conclude Wabash has
everything. Now the instance from which this conclusion would
generalize is an instance for the term Wabash’s bad side and this term
does not appear in either the assumption or the conclusion, so it
satisfies both of the requirements we have imposed so far. We could
handle cases like this by requiring that terms on which we generalize
share no vocabulary with either the assumptions or the conclusion. That
would take care of this case (since Wabash’s bad side shares vocabulary
with both) and it would be more than enough to insure that an
argument is general. Indeed, it would be enough to require, of a
compound term, that its main functor not appear in the assumptions or
conclusion (so, in the example above, the real problem is the appearance
of the functor λx (x’s bad side) in the premise and not the appearance of
the term Wabash in the conclusion). However, it is easier simply to
prohibit generalization on compound terms. Unanalyzed terms that
satisfy the first two requirements clearly share no vocabulary with the
assumptions or conclusion so, for those terms, the first two
requirements are enough.

We are now ready to state our law for the unrestricted universal
as a conclusion: for any unanalyzed term a appearing in neither Γ nor
∀x θx, we have

Γ ⇒ ∀x θx if and only if Γ ⇒ θa.

Let us say that an unanalyzed term appearing in neither the premises or
conclusion of an argument is parametric, or a parameter, for that
argument. In this vocabulary, the law says that an argument with an
unrestricted universal conclusion is valid if and only if the premises
entail an instance of the universal for a parameter. When arguments are
stated in English, phrases like let a be arbitrary or let us choose a
arbitrarily function as commitments to use the term a as a parameter.

Can be we sure that there will always be a parametric term on hand
when we need one? Clearly, we would be stymied if our premises
contained every term in the language. That is not a practical concern,
but it shows that if there is always to be an appropriate term available
for even any finite set of premises, our language must contain infinitely
many parametric terms. Can we be sure that it does? If we are working
with an idealized model of English, we can just stipulate that is does.
Parametric terms are needed only for the inner workings of a derivation
and need never appear in the initial premises and conclusion, so they do
not have to be already available in the language. But even in real English
there seems to be no shortage. The letter X is certainly overworked, but
mathematicians always seem able to find one more symbol, no matter
how many they are already juggling. If our imaginations falter, we can
always resort to X′, X′′, X′′′, and so on—or else, X1, X2, ....

There is a more crucial question about this law: is it really true? We have
been adding restrictions to insure that generalization is warranted. Can
we be sure that we have enough? To see that we do, note first that the
only-if part of the law is no problem. It says that a universal cannot be a
valid conclusion unless any instance for a parameter is also valid, and
this must be so because the universal implies all its instances.

So, let us consider the if part. To establish it, it is easiest to show that
failure of the entailment Γ ⇒ ∀x θx implies failure of the entailment Γ 
⇒ θa when a is parametric. Now, for the first entailment to fail, it must
be possible to find a reference value that serves as a counterexample to
the universal ∀x θx in some case where each member of Γ is true. Since
the parameter a is foreign to both the premises and the universal
conclusion, it can be made to refer to such a counterexample without
interfering with the truth values of the premises. But this is to say we
can make θa false while all members of Γ are true, and that means that
the entailment Γ ⇒ θa fails. Turning this around, if Γ ⇒ θa holds when
a is a parameter, then, when the premises Γ are all true, we know that
there is no counterexample to the universal, which implies that the
universal is true.

There is a more concrete way of showing that a parametric term is
enough to insure that we have a general argument. Suppose we have
established a conclusion θa for a parametric term a. Generalization to 
∀x θx will be legitimate if we can argue from the same premises to each
of its instances θτ. But we can find an argument for an instance θτ by
following the pattern set by the argument for θa; we can simply replace
the term a by τ everywhere in the argument for θa to get an argument
for θτ. Because a is a parameter, it is not in the premises (and thus
shares no vocabulary with them), so there is no connection between a



and the premises that would make the argument go through for it but
not for another term τ. And, because the parameter a is not in the
conclusion, it is not in θ, so replacing it by τ everywhere will leave θ
unchanged and change θa into θτ.

This argument recalls the comparison of the universal with conjunction.
Since a conjunction can have any components, we must argue for each
component individually and, since a conjunction has only two
components, there is nothing to keep us from doing this. On the other
hand, there would be no hope of providing a separate argument for each
instance of a universal since, in general, there is no way of setting a limit
on the number of instances it has. However, there is no need to consider
each of these instances individually since they all have the same form, so
an argument for one parametric instance can set the pattern for all of
the rest.

Let us collect the two laws for the unrestricted universal before going on
to see how to implement them in derivations.

Law for the unrestricted universal as a premise. For any
term τ, we have:

Γ, ∀x θx ⇒ Σ if and only if Γ, ∀x θx, θτ ⇒ Σ.

Law for the unrestricted universal as a conclusion. For any
unanalyzed term a appearing in neither Γ nor ∀x θx, we have:

Γ ⇒ ∀x θx if and only if Γ ⇒ θa

Again notice the difference between range of instances mentioned in the
two laws. In the first, τ can be any term while, in the second, a must be
a parameter relative to the premises and the universal.

Glen Helman  06 Nov 2004

7.5.3. Derivations for universals

The implementation of the laws for universal quantifiers is fairly
straightforward if we use derivations only in a positive way—i.e., use
them only to show that entailments hold. Their use to show that
entailments fail will be postponed until 7.6. We do need one general
elaboration of our system of derivations that we will use to manage
general arguments. The portion of a derivation that constitutes a general
argument will be marked by a scope line that is flagged by the
parametric term on which we generalize (as shown in Figure 7.5.3-1).
This flagging declares that the term is parametric. Indeed, we will
require that a term flagging a scope line appear only to its right, so the
scope line will mark the scope of the term’s use. This is more than is
necessary to stay in accord with the laws for universals as conclusions.
They require only that the term not appear in either the goal or the
active resources of the gap that the vertical line spans, but we will never
run short of terms and the stronger requirement is far easier to check.

In either form, the requirement is designed to insure that the parameter
maintains no ties to the outside of the general argument so that, within
the argument, it might refer to anything at all. For this reason, we will
speak of a scope line flagged by a term as a veil of ignorance; the
portion of the derivation marked off by the scope line proceeds without
any information about the specific identity of the parameter a.

│…
│ⓐ
││
││…
││
││
│…

Fig. 7.5.3-1. A veil of ignorance flagged by the parameter a.

Now, let us look at the rules—first those for unrestricted quantifiers.
Figure 7.5.3-2 shows the exploitation rule, which we will call Universal
Instantiation (UI). It can be used to add any instance of the universal
as a further resource, notating the universal to indicate the term for
which an instance was added.



│…
│∀x ... x ...
│…
││…
││
││
│├─
││φ
│…

│…
│∀x ... x ... τ:n
│…
││…

n UI││... τ ...
││
│├─
││φ
│…

Fig. 7.5.3-2. Developing a derivation at stage n by exploiting an unrestricted
universal for a term τ.

Although we record the use of this rule alongside the universal, the
universal resource is not rendered completely inactive. The rule provides
only a partial exploitation, extracting the content of the universal only
for the single term τ. Since a universal does not bring with it any
definite set of instances, it will never be rendered completely inactive, no
matter how often this rule is used. Still, one use of the rule does exploit
the universal for one term, and we record this by noting both the stage
number and the term for which the universal has been exploited.

This information is used (much in the way we have used marking by
stage numbers) to judge when a universal is active for a given term. To
be active for a given term in a gap, a universal must be available in the
gap and must not have been exploited for the term in the course of
narrowing the gap. Specifically, an available universal is inactive for τ
in a gap if it is marked by a pair τ:n and all scope lines to the left of
some resource or goal entered at stage n continue unbroken to the left
of the gap. Although an available universal is always active, it may not
be active for all terms; and a term for which we apply the exploitation
rule above should be one for which the universal is still active.

As we will see in 7.7.4 , the use of this rule may be limited to terms
appearing in the available resources and goals the gap. These are the
same terms from which we form alias sets and it will be enough to
exploit a universal for at least one term from each alias set. But,
occasionally, no terms will appear in the initial premises and conclusion
and none will be introduced by other rules. When this is so, the
exploitation rule above may be used to introduce a new unanalyzed term
into the derivation.

At the other extreme, use of this rule in case of generalizations
containing functors may introduce new terms into the derivation,
leading to new uses of the rule. For example, instantiating ∀x P(fx) for
the term a will give us P(fa), which contains the term fa, and we may
use this term also to instantiate the generalization, giving us P(f(fa)),

which contains the term f(fa)—and so on. As we will see in 7.6, this is
one aspect of a general feature of the deductive logic for generalizations
that will sometimes keep a derivation from ever reaching an end. That is
not our concern now, but the possibility of going on forever in the
application of rules shows that we can no longer wait to apply rules fully
before checking to see if a gap closes. And, because a large number of
applications of instantiation may be possible, it is wise to select from
among the terms with which we might instantiate a generalization those
that seem most likely to help us close a gap.

The following two derivations illustrate these points.

│∀x ∀y ∀z Rxyz a:1
├─

1 UI │∀y ∀z Rayz b:2, c:4
2 UI │∀z Rabz c:3
3 UI │Rabc (6)
4 UI │∀z Racz c:5
5 UI │Racc (6)
6 Adj │Rabc ∧ Racc (7)

│●
├─

7 QED│Rabc ∧ Racc

 │∀x Fx a:1
│∀x ¬ Fx a:2
├─

1 UI│Fa (3)
2 UI│¬ Fa (3)

│●
├─

3 Nc│⊥

The first derivation keeps the use of UI to a minimum. Only the main
quantifier is removed with each use, so three uses are required to reach
the bare predication Rabc. Only two more are needed to reach Racc but
three would have been required to reach a predication, such as Rccc,
which did not have the term a in the first place after R. On the other
hand, a full use of instantiation for the terms appearing in the
conclusion would have lead to 3 + 3×3 + 3×3×3 = 39 uses of UI (i.e.,
three to exploit the premise for a, b, and c, three each to exploit the
three resources that result, and three each to the nine resources added
in that way). A derivation is not damaged by extra uses of UI any more
than it is damaged by using Ext to add conjuncts that are not needed
later. But, while adding all conjuncts as resources whenever a
conjunction was exploited presented no practical problem, using UI in
all ways possible would often lead to unmanageably large derivations.

The premises and conclusion of the second derivation above contain no
terms at all, so there would be no way of beginning it if we did not
instantiate one of them for a new term. This is the only sort of case in
which instances need be added for terms new to the gap being
developed. The fact that we do so at all reflects the assumption built into
our system that there is at least one reference value. The derivation
above shows one consequence of this assumption—namely, that
Everything is finished and Everything is unfinished are inconsistent.



Clearly, if there is anything at all, then these two sentences cannot both
be true. On the other hand, if we were to drop the assumption that there
is something, both sentences could be true. For generalizations are false
only when they have counterexamples; and, in a world in which there
was nothing, there would be nothing to serve as a counterexample to
either Everything is finished or Everything is unfinished.

Finally, let us look at the planning rule for universal goals. It is known
as Universal Generalization (UG) and is shown in 7.5.3-3.

│…
││…
││
││
││
││
│├─
││∀x ... x ...
│…

│…
││…
││ⓐ
│││
││├─
│││... a ... n
│├─

n UG││∀x ... x ...
│…

Fig. 7.5.3-3. Developing a derivation at stage n by planning for an unrestricted
universal;  the parameter a may be any unanalyzed term that  is new to the

derivation.

We try to reach our goal by a general argument, so we choose as our
parameter an unanalyzed term a that is new to the derivation. An
instance of ∀x θx for the term a is the goal of the general argument, and
further development of the gap lies on the other side of a veil of
ignorance concerning that parameter.

The short derivation shown below illustrates these two rules.

│∀x ∀y Rxy b:3
├─
│ⓐ
││ⓑ

3 UI │││∀y Rby a:4
4 UI │││Rba (5)

│││●
││├─

5 QED│││Rba 2
│├─

2 UG ││∀y Rya 1
├─

1 UG │∀x ∀y Ryx

At the initial stage here, there is no vocabulary from which a term may
be formed—and UI should be used to introduce new terms only as a last
resort—so we apply the planning rule to the universal conclusion.
Whenever we apply this rule we must introduce a new term as a

parameter so, when the rule is applied a second time at stage 2, a
second new term is introduced. There is now plenty of vocabulary for
use with the exploitation rule. It would have been possible to exploit the
initial premise twice to add ∀y Ray as well as ∀y Rby to the resources,
and we might have exploited each of these resources twice as well. But
the two uses of the exploitation rule that are shown above are enough to
derive the resources that enables us to close the gap.
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7.5.s. Summary

The universal quantifiers and conjunction may both be used to say that
each of a group of claims is true. This overlap in function indicates an
analogy between these logical constants that can be seen also in the laws
of entailment for them. The analogue to a component of a conjunction is
an instance  of a universal, in which applies the universal’s quantified
predicate is predicated a term. A universal is rarely equivalent to an
actual conjunction of its instances, but for a given referential range R, it
behaves like a possibly infinite conjunction of instances in a language
enriched by adding the IDs of all values in R—i.e., it behaves like the
conjunction of its instances in an expansion  of the language by R.
When we do not fix the range R, a universal ∀x θx is not associated
with any definite set of instances, but we still know that its instances θτ
are all predications of λx θx; and these two features are reflected in the
laws of entailment for universals.

In the case of an unrestricted universal, we can state a principle of
universal instantiation , which says that the universal implies each of its

instances, and we may use this with the law for lemmas to get a law for
this sort of universal as a premise . We can describe the role of an
unrestricted universal as a conclusion by using the idea of a general
argument , in which an instance of a generalization is established in
such a way that we may generalize  from it to a universal claim. It is
sufficient for an argument to be a general one that the term for which
the instance is given not be compound, that it not appear in the
premises, and that it not appear in the generalization we wish to
conclude. Such a term is parametric or a parameter  for the argument.
The law for the unrestricted conditional as a conclusion  then tells us
that we can conclude a universal from given premises when we can
conclude an instance of it for a parametric term.

In implementing the laws for universals as conclusions, we flag  scope
lines by terms that are being used as parameters; such terms can appear
only to the right of their scope lines. We plan for an unrestricted
universal goal by planning to use the rule Universal Generalization
(UG) . It directs us to set up a flagged scope line with an instance for
the parameter as a new goal. While we introduce new terms when
planning for universal conclusions, the rule for exploiting universal
resources— Universal Instantiation (UI) —should be used only for terms
already appearing in the gap—provided there is at least one such term.
The exploitation of universals can never be considered complete, and an
available universal resource is always an active resource; but
exploitation rules do render universals inactive for  particular terms and

should be applied only to terms for which the universal remains active.
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7.5.x. Exercise questions

1. Give the instances of each of the following for the terms a, b, and c
(remembering that you will drop the main quantifier, and only the
main one, when giving an instance):

 a. ∀x Fx
 b. ∀y Fy
 c. ∀x Rxa
 d. ∀x Saxb
 e. ∀x ∀y Rxy
 f. ∀x (Fx → Gx)
 g. ∀x (Fx → Gd)
 h. ∀x (Fx → ∀y Rxy)
 i. ∀x (Fx → ∀x Rxx)
2. Use the system of derivations to establish each of the following. You

may use detachment and attachment rules.
 a. ∀x Fx, ∀x (Fx → Gx) ⇒ Ga
 b. ∀x (Fx ∧ Gx) ⇒ Fa ∧ Gb
 c. ∀x Rxa, ∀x (Rbx → Gx) ⇒ Ga
 d. ∀x Fx, ∀x (Fx → Gx) ⇒ ∀x Gx
 e. ∀x (Fx ∧ Gx) ⇔ ∀x Fx ∧ ∀x Gx
 f. ∀x ∀y Rxy ⇒ (Rab ∧ Rbb) ∧ Rca
 g. ∀x ∀y Rxy ⇒ ∀y Rya
 h. ∀x ∀y (Rxy → ¬ Ryx) ⇒ ∀x ¬ Rxx
 i. ∀x ∀y ∀z ((Rxy ∧ Ryz) → Rxz), ∀x ¬ Rxx ⇒ ∀x ∀y (Rxy → 

¬ Ryx)

Glen Helman  01 Aug 2004

7.5.xa. Exercise answers

1.    instance for a instance for b instance for c
 a. ∀x Fx  Fa  Fb  Fc
 b. ∀y Fy  Fa  Fb  Fc
 c. ∀x Rxa  Raa  Rba  Rca
 d. ∀x Saxb  Saab  Sabb  Sacb
 e. ∀x ∀y Rxy  ∀y Ray  ∀y Rby  ∀y Rcy
 f. ∀x (Fx → Gx)  Fa → Ga  Fb → Gb  Fc → Gc
 g. ∀x (Fx → Gd)  Fa → Gd  Fb → Gd  Fc → Gd
 h. ∀x (Fx → ∀y Rxy) Fa → ∀y Ray  Fb → ∀y Rby  Fc → ∀y Rcy
 i. ∀x (Fx → ∀x Rxx) Fa → ∀x Rxx  Fb → ∀x Rxx  Fc → ∀x Rxx
2. a. │∀x Fx a:1

│∀x (Fx → Gx) a:2
├─

1 UI │Fa (3)
2 UI │Fa → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga

 b. │∀x (Fx ∧ Gx) a:1, b:3
├─

1 UI │Fa ∧ Ga 2
2 Ext │Fa (5)
2 Ext │Ga
3 UI │Fb ∧ Gb 4
4 Ext │Fb
4 Ext │Gb (5)
5 Adj │Fa ∧ Gb (6)

│●
├─

6 QED│Fa ∧ Gb

 c. │∀x Rxa b:1
│∀x (Rbx → Gx) a:2
├─

1 UI │Rba (3)
2 UI │Rba → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga



 d. │∀x Fx a:2
│∀x (Fx → Gx) a:3
├─
│ⓐ

2 UI ││Fa (4)
3 UI ││Fa → Ga 4
4 MPP││Ga (5)

││●
│├─

5 QED││Ga 1
├─

1 UG │∀x Gx

 e. │∀x (Fx ∧ Gx) a:3,b:7
├─
││ⓐ

3 UI │││Fa ∧ Ga 4
4 Ext │││Fa
4 Ext │││Ga (5)

│││●
││├─

5 QED│││Fa 2
│├─

2 UG ││∀x Fx 1
│
││ⓑ

7 UI │││Fb ∧ Gb 8
8 Ext │││Fb
8 Ext │││Gb (9)

│││●
││├─

9 QED│││Gb 6
│├─

6 UG ││∀x Gx 1
├─

1 Cnj │∀x Fx ∧ ∀x Gx

 │∀x Fx ∧ ∀x Gx 1
├─

1 Ext │∀x Fx a:3
1 Ext │∀x Gx a:4

│ⓐ
3 UI ││Fa (5)
4 UI ││Ga (5)
5 Adj ││Fa ∧ Ga X, (6)

││●
│├─

6 QED││Fa ∧ Ga 2
├─

2 UG │∀x (Fx ∧ Gx)

  The term a could have been used again as the parameter of the
second general argument of the derivation on the left since we require
only that a parameter not appear outside its scope line in the gap
which is developed by introducing the general argument, and the first
general argument is boxed off from the gap that is developed by
setting up the second one. But we will not be short of letters to use as
parameters, so it will be easier to see that the requirement is satisfied
if we use a new parameter for each general argument in a derivation.

 f. │∀x ∀y Rxy a:1, b:3
├─

1 UI │∀y Ray b:2
2 UI │Rab (5)
3 UI │∀y Rby b:4, a:6
4 UI │Rbb (5)
5 Adj │Rab ∧ Rbb X, (7)
6 UI │Rba (7)
7 Adj │(Rab ∧ Rbb) ∧ Rba X, (8)

│●
├─

8 QED│(Rab ∧ Rbb) ∧ Rba

 g. │∀x ∀y Rxy b:2
├─
│ⓑ

2 UI ││∀y Rby a:3
3 UI ││Rba (4)

││●
│├─

4 QED││Rba 1
├─

1 UG │∀y Rya

Notice that the term a cannot be used as the parameter of the
general argument in this derivation because it already appears
in the gap (specifically, in its goal) when the general argument
is introduced.

 h. │∀x ∀y (Rxy → ¬ Ryx) a:3
├─
│ⓐ
│││Raa (5), (6)
││├─

3 UI │││∀y (Ray → ¬ Rya) a:4
4 UI │││Raa → ¬ Raa 5
5 MPP│││¬ Raa (6)

│││●
││├─

6 Nc │││⊥ 2
│├─

2 RAA││¬ Raa 1
├─

1 UG │∀x ¬ Rxx



 i. │∀x ∀y ∀z ((Rxy ∧ Ryz) → Rxz) a:5
│∀x ¬ Rxx a:10
├─
│ⓐ
││ⓑ
││││Rab (8)
│││├─
│││││Rba (8)
││││├─

5 UI │││││∀y ∀z ((Ray ∧ Ryz) → Raz) b:6
6 UI │││││∀z ((Rab ∧ Rbz) → Raz) a:7
7 UI │││││(Rab ∧ Rba) → Raa 9
8 Adj │││││Rab ∧ Rba X,(9)
9 MPP│││││Raa (11)
10 UI │││││¬ Raa (11)

│││││●
││││├─

11 Nc │││││⊥ 4
│││├─

4 RAA││││¬ Rba 3
││├─

3 CP │││Rab → ¬ Rba 2
│├─

2 UG ││∀y (Ray → ¬ Rya) 1
├─

1 UG │∀x ∀y (Rxy → ¬ Ryx)
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