7.5.2. The role of generalizations in
entailment

The special features of the laws we will state for the universals can be
traced to two sources. One is the analogy with conjunction we have just
explored. The other is a pair of differences between what we have said
about universals and what we may say about ordinary conjunctions. The
first difference lies in the fact that the principles of entailment for
universals must hold for all structures, so they cannot depend on special
assumptions about the range R of reference values. This means, in
particular, that the set of “components” of a universal (i.e., its instances
in an expansion by R) must be left indefinite while an ordinary
conjunction has a definite and, indeed, finite set of components. This
would make universals difficult to deal with were it not for their second
difference from conjunctions. The components of an ordinary
conjunction can be any pair of sentences so they need have nothing in
common, and we must consider them individually; but the instances of a
universal all follow the same pattern, differing only in occurrences of a
single term, so we can speak of them all together by speaking of this
pattern.

We will develop laws for universals by taking certain laws for
conjunctions as our model and modifying them to take account of the
differences just outlined. The laws for conjunction we will work from are
the following;:

bAY =0
brAYy =9y
F=¢Arypifand onlyif T = ¢ and T = .

The last should be no surprise since it is our basic law for conjunction as
a conclusion but, although the first pair of principles are clearly
associated with the rule of Extraction, they are less far reaching than our
law for conjunction as a premise. Our use of these less general principles
is itself due to the differences between universals and conjunction: the
law for conjunction as a premise says we can replace a conjunction by its
components, but there is no hope of doing anything like this for a
universal since it has no one definite set of “components.”

What laws can we state for unrestricted universals that are analogous to
these laws for conjunction? The first pair of laws for conjunction noted
above together say that a conjunction implies each of its components.
The analogous claim about an unrestricted universal is that it implies
each of its instances. This is a principle known as universal



instantiation:
Vx 0x = 0t for each term «. (That is, Vx ... x ... = ... T ....)

For example, the sentence Everything is fine and dandy implies the
claim The number 2 is fine and dandy as well as other sentences of the
form = is fine and dandy.

The principle of universal instantiation is not quite what we will take as
our account of the unrestricted universal as a premise. Universal
instantiation can be used along with the law of lemmas to develop a
derivation by adding any instance of a universal premise as a further
resource. And it is that use of universal instantiation that we call our
law for the unrestricted universal as a premise: for any term r,
we have

I, Vx 6x = X if and only if I', Vx 0%, 6t = X.

That is, given a universal premise, we may add any instance as a further
premise. Note that the instance is added as a further premise. We
cannot drop the universal because we cannot expect its content to be
exhausted by a single instance; Everything is fine and dandy, for
example, has implications for things other than the number 2. As you
might expect, our inability to drop the universal from the premises will
some cause complications when we try to implement this law in
derivations.

Now let us look at the role of an unrestricted universal as a conclusion.
Here we have the law for conjunction as a conclusion to use as a model.
We have to expect changes, though, because that law gives separate
consideration to each of the two components of the conjunction and we
cannot expect to do this for the instances of a universal. Still, the law for
conjunction points us in the right direction: we should look for some
way of connecting the validity of a universal conclusion with the validity
of arguments having its instances as conclusions. A connection like this
is used in geometric proofs when we begin by saying, for example, “Let
ABC be a triangle,” and then go on to use our conclusions concerning
ABC to justify general conclusions about all triangles. That is, we
sometimes establish universal claims by generalizing from particular
instances of them.

Clearly not every generalization from a particular instance will be
legitimate. Certain premises may entail The Empire State Building is tall
without entailing Every building is tall. In a geometric argument
concerning a triangle ABC, we limit the information that we may use
about the instance that we are considering to what we may establish
concerning any triangle. For example, we ignore the fact we are using a



diagram that shows ABC as acute or obtuse, and we probably avoid
drawing it as a right triangle or an isosceles triangle to begin with.
These restrictions are sometimes expressed by saying that we are
arguing about an arbitrary or an arbitrarily chosen triangle. The idea is
that what you say about the triangle ABC should hold for a triangle
chosen at random or even one chosen by your worst enemy. Let us call
an argument like this a general argument since it argues for an
instance in a way that will hold generally for values in the domain of a
universal. The law we are looking for should say that an unrestricted
universal is a valid conclusion from given premises if we can establish
an instance of it by a general argument. But we need to make this more
precise.

In particular, we need to say how we can recognize a general argument
just by looking at the logical forms of the sentences it involves. If we
were to give instructions for making a general argument about a triangle
ABC, one thing we might say is that we should not use any special
assumptions about ABC. If we are going to generalize about triangles, we
may assume that ABC is a triangle but we should not assume that it is
acute or obtuse. This is just another way of saying that we should not
use special information about this triangle, but it suggests an idea we
can apply to arguments when we know only their logical forms.

Since we are considering arguments for unrestricted universals, we must
be able to generalize not just about triangles, or some other limited
class, but about everything; and that means we should use no
assumptions at all about the term from which we wish to generalize. So
we can say this: if we wish to generalize from an instance 6t to a
universal Vx 0x, the term t should not appear in our assumptions. You
may have noticed a couple of jumps here. Saying we have an assumption
containing t is different from saying we have used that assumption, and
saying that T appears in an assumption is different from saying that the
assumption provides special information about t. For example, The
number 2 is fine and dandy and so is everything else mentions the
number 2 without constituting a special assumption about it. Still, the
requirement that the term from which we generalize not appear in the
assumptions is easy to check and using it will not limit the entailments
we can establish, only the terms we can use to establish them.

This requirement is enough to rule out many unwarranted
generalizations but it does not exclude them all. To see why, suppose we
are arguing from the assumption Everything is like itself. One
conclusion we can draw is Wabash is like Wabash and, in doing so, we
have certainly used no special assumptions about Wabash. But this
conclusion says that Wabash has the property of being like Wabash and



that makes it an instance of the generalization Everything is like
Wabash. But generalizing to that conclusion is surely unwarranted. The
problem with this argument is that even though the term Wabash stands
in no special relation to the assumptions, it does stand in a special
relation to the universal conclusion Everything is like Wabash. In
particular, it plays a special role in the predicate that the conclusion
claims to be universal. These considerations suggest a second
requirement for a general argument: if we wish to generalize from an
instance 6t to a universal Vx 60x, the term t should not appear in our
conclusion; that is, it should not appear in 6.

There remains only one sort of problem to consider. Suppose our
assumption is Everything has its bad side. We can conclude Wabash
has its bad side. But we cannot go on to conclude Wabash has
everything. Now the instance from which this conclusion would
generalize is an instance for the term Wabash’s bad side and this term
does not appear in either the assumption or the conclusion, so it
satisfies both of the requirements we have imposed so far. We could
handle cases like this by requiring that terms on which we generalize
share no vocabulary with either the assumptions or the conclusion. That
would take care of this case (since Wabash’s bad side shares vocabulary
with both) and it would be more than enough to insure that an
argument is general. Indeed, it would be enough to require, of a
compound term, that its main functor not appear in the assumptions or
conclusion (so, in the example above, the real problem is the appearance
of the functor Ax (x’s bad side) in the premise and not the appearance of
the term Wabash in the conclusion). However, it is easier simply to
prohibit generalization on compound terms. Unanalyzed terms that
satisfy the first two requirements clearly share no vocabulary with the
assumptions or conclusion so, for those terms, the first two
requirements are enough.

We are now ready to state our law for the unrestricted universal
as a conclusion: for any unanalyzed term a appearing in neither I nor
Vx 0x, we have

I' = Vx 0x if and only if I' = 6a.

Let us say that an unanalyzed term appearing in neither the premises or
conclusion of an argument is parametric, or a parameter, for that
argument. In this vocabulary, the law says that an argument with an
unrestricted universal conclusion is valid if and only if the premises
entail an instance of the universal for a parameter. When arguments are
stated in English, phrases like let a be arbitrary or let us choose a
arbitrarily function as commitments to use the term a as a parameter.



Can be we sure that there will always be a parametric term on hand
when we need one? Clearly, we would be stymied if our premises
contained every term in the language. That is not a practical concern,
but it shows that if there is always to be an appropriate term available
for even any finite set of premises, our language must contain infinitely
many parametric terms. Can we be sure that it does? If we are working
with an idealized model of English, we can just stipulate that is does.
Parametric terms are needed only for the inner workings of a derivation
and need never appear in the initial premises and conclusion, so they do
not have to be already available in the language. But even in real English
there seems to be no shortage. The letter X is certainly overworked, but
mathematicians always seem able to find one more symbol, no matter
how many they are already juggling. If our imaginations falter, we can
always resort to X', X", X", and so on—or else, X;, X,, ....

There is a more crucial question about this law: is it really true? We have
been adding restrictions to insure that generalization is warranted. Can
we be sure that we have enough? To see that we do, note first that the
only-if part of the law is no problem. It says that a universal cannot be a
valid conclusion unless any instance for a parameter is also valid, and
this must be so because the universal implies all its instances.

So, let us consider the if part. To establish it, it is easiest to show that
failure of the entailment I' = Vx 6x implies failure of the entailment T’
=> 0a when a is parametric. Now, for the first entailment to fail, it must
be possible to find a reference value that serves as a counterexample to
the universal Vx 0x in some case where each member of I is true. Since
the parameter a is foreign to both the premises and the universal
conclusion, it can be made to refer to such a counterexample without
interfering with the truth values of the premises. But this is to say we
can make 0a false while all members of I are true, and that means that
the entailment I' = 0a fails. Turning this around, if T' = 6a holds when
a is a parameter, then, when the premises I are all true, we know that
there is no counterexample to the universal, which implies that the
universal is true.

There is a more concrete way of showing that a parametric term is
enough to insure that we have a general argument. Suppose we have
established a conclusion 6a for a parametric term a. Generalization to
Vx 0x will be legitimate if we can argue from the same premises to each
of its instances 6. But we can find an argument for an instance 6t by
following the pattern set by the argument for 6a; we can simply replace
the term a by t everywhere in the argument for 6a to get an argument
for Bt. Because a is a parameter, it is not in the premises (and thus
shares no vocabulary with them), so there is no connection between a



and the premises that would make the argument go through for it but
not for another term t. And, because the parameter a is not in the
conclusion, it is not in 6, so replacing it by T everywhere will leave 6
unchanged and change 6a into 6.

This argument recalls the comparison of the universal with conjunction.
Since a conjunction can have any components, we must argue for each
component individually and, since a conjunction has only two
components, there is nothing to keep us from doing this. On the other
hand, there would be no hope of providing a separate argument for each
instance of a universal since, in general, there is no way of setting a limit
on the number of instances it has. However, there is no need to consider
each of these instances individually since they all have the same form, so
an argument for one parametric instance can set the pattern for all of
the rest.

Let us collect the two laws for the unrestricted universal before going on
to see how to implement them in derivations.

Law for the unrestricted universal as a premise. For any
term T, we have:

I, Vx 6x = X if and only if I', Vx 0%, 6t = X.

Law for the unrestricted universal as a conclusion. For any
unanalyzed term a appearing in neither I nor Vx 6x, we have:

I' = Vx 0x if and only if I' = 6a

Again notice the difference between range of instances mentioned in the
two laws. In the first, T can be any term while, in the second, a must be
a parameter relative to the premises and the universal.



