
7.2.3. Compound restrictions

Connectives may appear within generalizations when we analyze their
restricting and quantified predicates. What we really analyze in such
cases are the bodies of the lambda abstracts to which the quantifiers are
applied. The analysis of such formulas and the problems that arise are
not much different from those of truth-functional logic though the
frequency with which various kinds of problems occur is different.

Since a restricting formula takes the form x is a C where C is a common
noun together with modifiers, an analysis of it as a truth-functional
compound will not be guided initially by English words marking
connectives (apart from cases like λx (x is a boy or girl) or λx (x is a
non-smoker) where the noun phrase itself is compounded using them).
Indeed, the analysis of restricting formulas will usually be a matter of
separating a common noun from its modifiers. As we saw in 2.1.3 ,
considerable care must be taken in separating attributive adjectives from
a common noun. The other modifiers we may find with common nouns
—prepositional phrases and relative clauses—are less of a problem in
this regard. The word large in x is a flea that is large acquires some of
its significance from the word flea and should be restated more
expansively when we analyze the open sentence to give something like x
is a flea ∧ x is large relative to fleas. Other problems with attributive
adjectives are absent or less pressing with relative clauses. While the
open sentence x is a good thief is ambiguous (referring either to skill as
a thief or to some compensating virtue that makes the thief a good
person), x is a thief who is good probably speaks of compensating virtue
and we would tend to use x is a thief who is good at it to speak of skill
in thievery. The open sentence x is an alleged murderer, which does not
admit any analysis as a conjunction, does not admit restatement with a
relative clause either; x is a murderer who is alleged to be one means
something different. The latter formula carries the implication x is a
murderer and may be analyzed as a conjunction.

Once modifiers are separated from the common noun of a class
indicator, a whole range of further logical structure may be open to
logical analysis. Relative clauses, in particular, can be rich stores of
truth-functional structure. For example, The officer stopped every car
that was either speeding or moving slowly and erratically may be
analyzed as follows:



Every car that was either speeding or moving slowly and erratically is
such that (the officer stopped it) 

(∀x: x is a car that was either speeding or moving slowly and
erratically) (the officer stopped x) 

(∀x: x is a car ∧ x was either speeding or moving slowly and
erratically) Tox 

(∀x: Cx ∧ (x was speeding ∨ x was moving slowly and erratically)) Tox
(∀x: Cx ∧ (Sx ∨ (x was moving slowly ∧ x was moving erratically)))

Tox

(∀x: Cx ∧ (Sx ∨ (Lx ∧ Ex))) Tpx 
∀x ( (Cx ∧ (Sx ∨ (Lx ∧ Ex))) → Tox)

[C: λx (x is a car); E: λx (x was moving erratically); L: λx (x was
moving slowly); S: λx (x was speeding); T: λxy (x stopped y); o: the
officer]

There is no special problem in finding the correct truth-functional
analysis is this sort of case.

In some cases where we might expect a truth-functional analysis, we do
not find one. This happens when a relative clause modifies the dummy
class indicator thing. We would analyze the open sentence x is a thing
that is red as we would x is red. And, in general, x is a thing that ... can
be treated as ... x ... where the variable x may appear in any of a number
of different positions when we put this into English; x is a thing that
Jack built amounts to Jack built x and x is a thing Dave sold to Ed
becomes Dave sold x to Ed. Of course, we can expect thing to drop out
only when it appears as a dummy restriction (see the discussion of
everything vs. every thing in 7.2.1 ).

Bounds and exceptions are another source of logical complexity in the
restricting formula. To see how to represent them symbolically, let us
return to the example that led us to these ideas. The generalization
Among members of the House, all Republicans except Midwesterners
supported the bill is affirmative so its attribute is expressed by its
quantified predicate  1  supported the bill without use of negation; this

will serve as the quantified predicate of the symbolic generalization. We
found the domain to be the class of members of the House who are
Republicans but not Midwesterners. Membership in this domain is
expressed by the predicate λx (x is a House member ∧ x is a Republican 
∧ ¬ x is a Midwesterner); this is the restricting predicate. Putting the
two predicates together, we have the following:



(∀x: x is a House member ∧ x is a Republican ∧ ¬ x is a Midwesterner)
x supported the bill

∀x ((x is a House member ∧ x is a Republican ∧ ¬ x is a Midwesterner) 
→ x supported the bill)

(Parenthetical grouping of the conjuncts is neglected here only to make
the result easier to read.)

The general pattern for an direct affirmative generalization with both
bounds and exceptions is as follows:

Among Bs, all Cs except Es are such that ...they...

(∀x: x is a B ∧ x is a C ∧ ¬ x is an E) ...x... 
∀x ( (x is a B ∧ x is a C ∧ ¬ x is an E) → ...x...)

That is, to handle a bounding class picked out by B, we need to conjoin
the formula x is a B to what we have otherwise. And, to handle a class of
exceptions picked out by a term E, we need to conjoin the formula ¬ x is
an E. The restricting formula of a direct negative generalization would
be handled in the same way since the only difference from a
corresponding affirmative generalization lies in the quantified formula.

The effect of bounds on complementary generalizations is analogous; the
general pattern is this:

Among Bs, only Cs are such that ...they...

(∀x: x is a B ∧ ¬ x is a C) ¬ ...x... 
∀x ( (x is a B ∧ ¬ x is a C) → ¬ ...x...)

While the restricting formula of an unbounded complementary
generalization is a negation, here the restricting formula is a but-not
form.
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