6.3.2. A law for aliases

If we include identity itself among the predicates and functors for which
identity obeys laws of congruence, it will follow that identity is an
equivalence relation provided that it is reflexive. For any reflexive
relation that is a congruence for itself will be symmetric and transitive
also. Moreover, it is enough to say that identity is a reflexive relation
and a congruence for all one-place predicates, simple and complex (i.e.,
including abstracts), to show that identity is a congruence for all
predicates and functors whatsoever. This provides one compact way of
capturing the laws for identity; but, when implementing these laws in
derivation rules, it will be most convenient to group them together in a
different way. We will have two principles, one of which will be the law
asserting that identity is a congruence for all simple predicates. The
other will be a law that groups reflexivity, symmetry, and transitivity
together with the law of congruence for functors.

We arrived at the laws of symmetry and transitivity by understanding an
equation T = v to say that the two terms t and v are co-aliases, and we
might have arrived at the law of reflexivity in the same way since in the
usage of alias we have adopted here each term is a co-alias of itself. We
can extend these same ideas more generally by speaking of terms t and
v as being co-aliases given a set A of equations or as being made co-
aliases by A. Our intention is that this relation capture the conditions
under which equations are entailed by other equations.

Clearly a set A of equations will imply that an equation t = v is true if
either an equation between t and v (in either order) appears in A or one
term can be reached from the other via a series of terms, each of which
is linked to the next (in either order) by an equation in A. For example,
if the equations shown in Figure 6.3.2-1 are in a set A, the terms a and e
are co-aliases given A, as are any other pair of terms appearing in the
list. Moreover, we may count each term as an alias for itself given any
set of equations.

a =>b
|
b = c¢
|
d = ¢
|
d = e

Fig. 6.3.2-1. A chain of equations making terms a and e co-aliases.

Although we have not yet stipulated all the conditions under which we
will count terms as co-aliases, we have said enough to summarize the
laws of reflexivity, symmetry, and transitivity—and more besides—by
stating a

Law for aliases: T = t = v if t and v are co-aliases given the set
of equations in T.

Like the law for a premise as a conclusion and a number of other
principles we have used, the law for aliases gives sufficient but not
necessary conditions for an entailment to hold, so it is stated with if
rather than if and only if. To see why an equation can be a valid
conclusion without its component terms being made co-aliases by the
premises, note that, while an equation will be entailed by a set of
equations only if it equates terms made co-aliases by that set, an
equation can be entailed by a set of sentences without being entailed by
the equations in the set. (For example, t = u is entailed by the premises
A —t =uand A, and that set contains no equations at all, only a
conditional and an unanalyzed sentence.)

Linking a pair of terms by a chain of equations is not the only way a set
might imply that they have the same extension. Recall the law of
congruence for an n-place functor f

Ty = Vy, ey Ty =V, = fr 01, = U0,

This tells us that the terms fr,...t,, and fv,...v,, must have the same
extension whenever their corresponding components (i.e., t, and v, T,
and v,, and so on) do. To incorporate this principle into the law for

aliases, we will want to say that two applications of a given functor are

made co-aliases whenever their corresponding components are made co-
aliases, and we will want to allow this sort of connection between terms
to figure as a link in a chain by which further terms are made co-aliases.

Putting all this together, we can give a fuller definition of the idea of co-
aliases as follows:

The co-aliases given a set A of equations include pairs of terms of all
of the following kinds:

(i) a term paired with itself;
(ii) a pair of terms equated (in either order) by a member of A;

(iii) a pair of terms connected by a chain of terms linked as co-
aliases given A;

(iv) a pair of applications of the same functor whose corresponding
components are co-aliases given A.

Notice that the third and fourth classes are described in terms of the
relation we are defining. A definition like this can be thought as a series
of instructions for building the extension of the relation it defines. We
first put in all the pairs covered by instructions (i) and (ii). Then we
gradually add more pairs as we are directed to by instructions (iii) and
(iv), replacing the phrase “co-aliases given A” by “pairs already in the
extension.” A pair of terms then count as co-aliases given A if and only
if they are added at some stage in this process. And, since this process of
building an extension for a two-place predicate can be described without
using the term co-alias, we really have explained the meaning of that
term.

In the simple examples we will usually consider, it will be easy to see
which terms are co-aliases given a set of equations. But it may help in
understanding the idea to think of the sort of “calculation” we might
perform to apply the definition in a more complex example. When
checking to see whether a pair of terms t and v are co-aliases given a set
A of equations, let us collect all terms appearing as components in T, v,
and A. Figure 6.3-2 shows these terms for a case where the set A
consists of the equations a = b, fb = ¢, fb = fc, d = gca, and g(fa)b = e
and we are checking to see whether the terms a and fd are co-aliases.

b b
fe o
td d goa

m

gifa)h

Fig. 6.3.2-2. A work space for finding co-aliases.

Notice that we include fa because it is a component g(fa)b; however,
there is no need to include fe or other more complex terms that could be
formed from this vocabulary. (The arrangement of the terms is not
significant; the one used here is designed simply to make later steps
easier to depict.)

Now let us accumulate links between co-aliases. We will represent them
as lines between terms. At the initial stage (which we will label 0), we
put in links corresponding to equations in the set A. We can follow
instruction (iii) after this and after each succeeding stage by considering
terms to be co-aliases when they are linked either directly or by a chain,

so there is no need to draw additional lines. At each of the stages from 1
on, we will consider all functors appearing among the terms and add
any links we are directed to by instruction (iv); this will usually require
new lines. We may need to do this several times over, but if we add no
new links at any stage we can stop because there will be nothing to add
thereafter. And, with a finite number of terms, this must happen at some
point because there are only a finite number of links we might add.

Figure 6.3.2-3 shows such a process for the example of Figure 6.3.2-2,
using labels on links to record the order in which they are entered. The
new links at each stage are emphasized along with any older links that
lead to the new entry. At stage 1, we check the applications of the
functors f and g to see whether we can add any links by instruction (iv).
Since a and b were already linked at stage 0, we add a link between fa
and fb. We add no other links between the applications of f because d is
not linked to a, b, or c¢. One pair of corresponding terms from gca and
g(fa)b (viz., a and b) were connected at stage 0 but the other pair were
not, so the link between the two applications of g is entered only at stage
2 after ¢ and fa have also been connected (by the link between fa and fb
we enter at stage 1). Even at stage 2 the group including d is not linked
to either the groups in which a, b, and ¢ appear, so there are no further
links between applications of f and the process is complete. The terms a
and fd we were checking do not prove to be co-aliases at the end, but
many other pairs of terms were shown to be co-aliases.

fa a fa a fa a
() 1 0 1]

h b h b th b

0] ™ 0 S 0|

E.;.'.“\E O E.;I}\\L

td d ——gea fd d o gca td d 0 Ev:'l_':"l:

- oitajb S gifa)h S gitajb

Stage o Stage 1 Stage 2

Fig. 6.3.2-3. Terms classified as co-aliases in a series of stages.

The links connect the terms in groups shown in Figure 6.3.2-4. The
members of any group are co-aliases of one another but not of any other
terms.

Fig. 6.3.2-4. Linked terms grouped in alias sets.

Some terms, like fd in the diagram, may be groups unto themselves; but,
because they are co-aliases of themselves, we can still say that any pair
made from such a group is a pair of co-aliases. If the terms had been
written down more randomly, the links between them might have
crossed and the groups of connected terms would no longer stand out;
but they would still be there, and any diagram can be disentangled so
that they appear. (This is a distinguishing feature of equivalence
relations; any such relation divides a range of values into non-
overlapping equivalence classes.) We will refer to each such group of
connected terms as an alias set.

Now we are ready to justify our law of aliases, which claims that ' = t =
v whenever t and v are co-aliases given the equations in I'. We can do
this by showing how this law summarizes earlier ones. Each of the
instructions (i)-(iv) for building connections between terms implements
one or more of laws of entailment:

instruction law(s)
i. enter all terms appearing as law of reflexivity (since entering
components in T, v, and the the term establishes a link with

set A of equations itself)
appearing in T’

ii. link each pair of terms law for a premise as a conclusion
equated (in either order) by and the law of symmetry (since a
a member of A link amounts to an equation in

both directions)
iii. count as linked any pair of law of transitivity
terms connected by a chain
of links
iv. link any pair of applications law of congruence for functors
of the same functor whose
corresponding components
are linked

We combine laws in (ii) and also through carrying out the instructions
in a series of stages. This combination of laws can be justified by the law

for lemmas because we can think of the process of adding links as a
process of adding further equations as lemmas.

