6.2.xa. Exercise answers

1. a. Reagan's vice president was the 41st president.

Reagan's vice president = the 41st president

[λx (x's vice president)] Reagan = [λx (the xth president)] 41

vr = pf v of r is p of f

[p: λx (the xth president); v: λx (x 's vice president); f: 41; r: Reagan]

b. Tom found a fly in his soup and he called the waiter Tom found a fly in his soup ∧ Tom called the waiter <u>Tom</u> found a fly in <u>Tom's soup</u> ∧ <u>Tom</u> called <u>the waiter</u> [λxy (x found a fly in y)] <u>Tom Tom's soup</u> ∧ [λxy (x called y)] <u>Tom the waiter</u>

 $Ft(\underline{Tom}'s soup) \wedge Ctr$ $Ft([\lambda x (x's soup)] \underline{Tom}) \wedge Ctr$

> Ft(st) A Ctr both F fits t'n s of t and C fits t'n r

[C: λxy (x called y); F: λxy (x found a fly in y)]; s: λx (x's soup); r: the waiter; t: Tom]

c. Tom found the book everyone had talked to him about and he bought a copy of it

Tom found the book everyone had talked to him about Λ Tom bought a copy of the book everyone had talked to him about
Tom found the book everyone had talked to Tom about Λ Tom bought a copy of the book everyone had talked to Tom about
[λxy (x found y)] Tom the book everyone had talked to Tom about Λ [λxy (x bought a copy of y)] Tom the book everyone had talked to Tom about
had talked to Tom about

Ft(the book everyone had talked to \underline{Tom} about) \land Bt(the book everyone had talked to \underline{Tom} about)

Ft([λx (the book everyone had talked to x about)] \underline{Tom}) \wedge Bt([λx (the book everyone had talked to x about)] \underline{Tom})

 $Ft(bt) \wedge Bt(bt) \\$ both F fits t 'n b of t and B fits t 'n b of t

[B: λxy (x bought a copy of y); F: λxy (x found y); b: λx (the book everyone had talked to x about); t: Tom]

d. Wabash College is located in Crawfordsville, which is the seat of Montgomery County

 $\frac{\textit{Wabash College}}{\textit{is the seat of Montgomery County}} \land \frac{\textit{Crawfordsville}}{\textit{County}} \land \frac{\textit{Crawford$

[λxy (x is located in y)] <u>Wabash College Crawfordsville</u> \wedge <u>Crawfordsville</u> = the seat of <u>Montgomery County</u> Lbc \wedge c = [λx (the seat of x)] <u>Montgomery County</u>

 $Lbc \wedge c = sm$ both L fits b 'n c and c is s of m

[L: λxy (x is located in y); s: λx (the seat of x); b: Wabash; c: Crawfordsville; m: Montgomery County]

e. Sue and Tom set the date of their wedding but didn't decide on its location

Sue and Tom set the date of their wedding

A Sue and Tom didn't decide on the location of their wedding Sue and Tom set the date of Sue and Tom's wedding

 $\land \neg \underline{Sue}$ and \underline{Tom} decided on the location of Sue and Tom's wedding

[\(\lambda\txyz\) (x and y set z)] <u>Sue</u> <u>Tom</u> <u>the date of Sue and Tom's</u> <u>wedding</u>

 $\land \neg [\lambda xyz (x \text{ and } y \text{ decided on } z)] \underline{Sue} \underline{Tom} \underline{the location of Sue}$ and Tom's wedding

Sst(the date of <u>Sue and Tom's wedding</u>)

 $\land \neg Dst(the location of \underline{Sue and Tom's wedding})$

 $Sst([\lambda x (the date of x)] \underline{Sue and Tom's wedding})$

 $\land \neg Dst([\lambda x (the location of x)] \underline{Sue and Tom's wedding})$

 $Sst(d(\underline{Sue} \ and \ \underline{Tom}'s \ wedding)) \land \neg \ Dst(l(\underline{Sue} \ and \ \underline{Tom}'s \ wedding))$

 $Sst(d([\lambda xy (x \ and \ y's \ wedding)] \ \underline{Sue} \ \underline{Tom}))$

 $\land \neg Dst(l([\lambda xy (x \ and \ y's \ wedding)] \ \underline{Sue} \ \underline{Tom}))$

 $Sst(d(wst)) \land \neg Dst(l(wst))$

both S fits s, t, 'n d of (w of s 'n t) and not D fits s, t, 'n l of (w of s 'n t)

[D: λxyz (x and y decided on z); S: λxyz (x and y set z); d: λx (the date of x); l: λx (the location of x); w: λxy (x and y 's wedding); s: Sue; t: Tom]

```
2. a. ([\lambda xy (x has spoken to y)] \underline{Ann} \underline{Bill} \wedge \neg [\lambda xy (x has spoken to y)] \underline{Ann} ([\lambda x (x's father)] \underline{Carol})) \rightarrow \neg \underline{Bill} = [\lambda x (x's father)] \underline{Carol}
```

(Ann has spoken to Bill $\land \neg [\lambda xy (x \text{ has spoken to y})] \underline{Ann}$ Carol's father) $\rightarrow \neg Bill = Carol's \text{ father}$

(Ann has spoken to Bill $\land \neg$ Ann has spoken to Carol's father) $\rightarrow \neg$ Bill is Carol's father

(Ann has spoken to Bill ∧ Ann hasn't spoken to Carol's father)

→ Bill isn't Carol's father

Ann has spoken to Bill but not to Carol's father → Bill isn't Carol's father

If Ann has spoken to Bill but not to Carol's father, then Bill isn't Carol's father

- **b.** $(B([\lambda x (x's father)] \underline{Ann})([\lambda x (x's mother)] \underline{Bill}) \vee S([\lambda x (x's mother)] \underline{Ann})([\lambda x (x's father)] \underline{Bill})) \rightarrow [\lambda xy (x and y are cross-cousins)] \underline{Ann} \underline{Bill})$
 - ([λxy (x is a brother of y)] <u>Ann's father Bill's mother</u> \vee [λxy (x is a sister of y)] <u>Ann's mother Bill's father</u>) \rightarrow Ann and Bill are cross-cousins

(Ann's father is a brother of Bill's mother v Ann's mother is a sister of Bill's father) → Ann and Bill are cross-cousins

Ann's father is a brother of Bill's mother or Ann's mother is a sister of Bill's father → Ann and Bill are cross-cousins

If Ann's father is a brother of Bill's mother or Ann's mother is a sister of Bill's father, then Ann and Bill are cross-cousins

c. Pab(m([$\lambda x (x's proposal)] \underline{Bill}$)([$\lambda x (x's proposal)] \underline{Carol}$))

 $\land \; Pac(m([\lambda x \; (x's \; proposal)] \; \underline{Bill})([\lambda x \; (x's \; proposal)] \; \underline{Carol}))$

Pab([λxy (the best compromise between x and y)] <u>Bill's</u> proposal Carol's proposal)

A Pac([λxy (the best compromise between x and y)] <u>Bill's proposal Carol's proposal</u>)

[\(\lambda\)xyz (x persuaded y to accept z)] Ann Bill the best compromise between Bill's proposal and Carol's proposal

 \land [\land xyz (x persuaded y to accept z)] <u>Ann Carol the best</u> compromise between Bill's proposal and Carol's proposal

Ann persuaded Bill to accept the best compromise between his and Carol's proposals

Ann persuaded Carol to accept the best compromise between Bill's proposal and hers

Ann persuaded each of Bill and Carol to accept the best compromise between their proposals

Glen Helman 21 Oct 2004