
6. Predications
6.1. Naming and describing

6.1.0. Overview

We will now begin to study a wider variety of logical forms in which we
identify components of sentences that are not also sentences.

6.1.1. A richer grammar  
A large variety of grammatical categories can be defined once we
introduce the idea of an individual term, an expression whose function
is to name.

6.1.2. Logical predicates  
When the subject is removed from a sentence, a grammatical
predicate is left behind; a logical predicate is what is left when any
number of individual terms are removed.

6.1.3. Identity  
We will study the special logical properties of only one predicate, the
one expressed by the equals sign.

6.1.4. Abstracts  
A predicate has a number of places in a given order, and abstracts are
a notation for associating these places with blanks in a sentence.

6.1.5. Analyzing predications  
When the analysis of truth-functional structure is complete, we go on
to analyze atomic sentences as predications.
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6.1.1. A richer grammar

While there are more truth-functional connectives that we might study
and more questions we might ask about those we have studied, we will
now move on from truth-functional logic. The logical forms we will now
explore involve ways sentences may be constructed out of expressions
that are not yet sentences. Although the kinds of expressions we will
identify do not correspond directly to any of the usual parts of speech,
our analyses will be comparable in detail to grammatical analyses of
short sentences into words.

The simplest case of this sort of analysis is related to, but not identical
with, the traditional grammatical analysis into subject and predicate.
You might find a grammar text of an old-fashioned sort defining subject
and predicate correlatively as the part of the sentence that is being
spoken of and the part that says something about it. Of course, in saying
that the subject is being spoken of, there would be no intention to say
that the predicate is used to say something about words. So the text
might go on to say that a subject contains a word that names the
“person, place, thing, or idea” (to quote one of my high school grammar
texts) about which something is being said. Thus we have the situation
shown in Figure 6.1.1-1.

Fig. 6.1.1-1. The traditional picture of grammatical subjects and predicates.

This picture is really not adequate for either grammar or logic, but
grammarians and logicians part company in the ways they refine it.
Grammarians look for more satisfactory definitions of subject and
predicate that capture, at least roughly, the expressions that have been
traditionally labeled in this way. Logicians, on the other hand, accept
something like the definitions above and look for expressions that really
have the functions they describe, whether or not these expressions
would traditionally be labeled subjects and predicates.

“Subjects” and “predicates” in the logical sense provide, along with
sentences and connectives, examples of two broad syntactic categories,
complete expressions and operations. Sentences are examples of
complete expressions and connectives are examples of operations. Like
connectives, operations in general can be thought of as expressions with



blanks, expressions that are incomplete in the sense that they are
waiting for input. We can classify operations according to the number
and kinds of inputs they are waiting for and the kind of output they
yield when they receive this input. In the case of connectives, both the
input or inputs and the output are sentences.

A “subject” in the logical sense will be a kind of complete expression, an
individual term. This is a type of expression whose function is to refer
to something; that is, it is an expression which can be described,
roughly, as naming a “person, place, thing, or idea.” In 6.2.1 , we will
consider the full range of expressions that count as individual terms but,
for now, it will be enough to have in mind some basic examples, proper
names (such as Socrates, Indianapolis, Hurricane Isabel, or 3) and
simple definite descriptions formed from the definite article the and a
common noun (such as the winner, the U.S. president, the park, the
book, or the answer).

In the simplest case, a “predicate” in the logical sense—for which we
will use the term predicate—is an expression that serves to say
something about the object referred to by an individual term. It is an
operation whose input is the individual term and whose output is a
sentence expressing what is said. So a predicate of this sort amounts to a
sentence with a blank waiting to be filled by an individual term. In
6.1.2 , we will extend this idea to include predicates that require

multiple inputs (i.e., that have several blanks to be filled). Such
predicates are certainly not predicates in the grammatical sense; but any
predicate in the logical sense will contain the main verb of any sentence
it yields as output, so many of the simplest examples of predicates will
correspond to verbs or verb phrases.

So the categories of expressions we are working with now include the
ones listed below (with simple examples chosen in the simple language
used in some popular early elementary school readers from the mid-

20th century):

Complete expressions
sentence 

Jane ran and Spot barked, 
Jane ran, Spot barked

individual term 
Jane, Spot

 
Operations

operation input output
connective 
__ and __

sentence(s) sentence

predicate 
__ ran, 
__ barked

individual term(s) sentence

Since we now have a number of kinds of expression that might be input
or output of an operation, there are many more sorts of operations that
we might distinguish according to their input and output, and we will go
on to consider some of them. For example, in 6.2.2 , we will add a kind
of operation which yields individual terms as output (for individual
terms as input). And the input and output of operations need not be
limited to complete expressions; in later chapters we will add operations
that take predicates as input.
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6.1.2. Logical predicates

We derived the concept of an individual term from a traditional
description of the grammatical subject of a sentence by focusing on the
semantic idea of naming. As we will see in 6.2.1, the idea of an
individual term is much narrower than the idea of a grammatical
subject: not every phrase that could serve as the subject of a sentence
counts as an individual term.

We have seen that the opposite is true of our concept of a predicate: it
includes grammatical predicates but many other expressions, too. The
definition of a predicate in our sense is, like the definition of an
individual term, a semantic one: a predicate says something about the
about whatever objects are named by the individual terms to which it is
applied. The simplest example of this is a grammatical predicate that
says something about an object named by an individual term. But
consider a sentence that has not only a subject but also a direct object
—Ann met Bill for example. This says something about Ann, but it also
says something about Bill. From a logical point of view, we could equally
well divide the sentence into the subject Ann on the one hand and the
predicate met Bill on other or into the subject-plus-verb Ann met and
the direct object Bill. And we will be most in the spirit of the idea that
predicates are used to say something about individuals if we divide the
sentence into the two individual terms Ann and Bill on the one hand
and the verb met on the other. The subject and object both are names,
and the verb says something about the people they name. That is why
we define a predicate as an operation that forms a sentence when
applied to one or more terms. We will speak of the application of this
operation as predication and speak of a sentence that results as a
predication.

We can present predicates in this sense graphically by considering
sentences containing any number of blanks. For example, the
predication Jane called Spot might be depicted as follows:

Individual terms: Jane  Spot
Predicate: Jane called Spot

The number of different terms to which a predicate may be applied is its
number of places, so the predicate above has 2 places while predicates,
like ___ ran and ___ barked, that are predicates in the grammatical
sense will have one place.

In the example above, the two-place predicate is a transitive verb and
the second individual term functions as a direct object in the resulting

sentence. The individual terms that serve as input to predicates also
often appear as indirect objects or as the objects of prepositional
phrases that modify a verb—as in the following examples:

Individual terms: Jane  Spot the ball
Predicate: Jane threw Spot the ball

Individual terms: the ball  the window  the fishbowl
Predicate: the ball went through the window into the fishbowl

Other examples of many-place predicates are provided by sentences
containing comparative constructions or relative terms. Even conjoined
subjects can indicate a many-place predicate when and is used to
indicate the terms of a relation rather than to state a conjunction:

Individual terms: Jane  Sally
Predicate: Jane is older than Sally

Individual terms: 2  5
Predicate: 2 < 6

Individual terms: Jane  Sally
Predicate: Jane is a sister of Sally

Individual terms: Jane  Sally  
Predicate: Jane and Sally are sisters

Although you will rarely run into predicates with more than three or
four places, it is not hard make up examples of predicates with
arbitrarily large numbers of places. For example, imagine the predicate
you would get by analyzing a sentence that begins Sam travelled from
New York to Los Angeles via Newark, Easton, Bethlehem, .... and goes
on to state the full itinerary of a trans-continental bus trip.

The places of a many-place predicate come in a particular order. For
example, the sentences Jane is older than Sally and Sally is older than
Jane are certainly not equivalent, so it matters which of Jane and Sally
is in the first place and which in the second when we identify them as
the inputs of the predicate ___ is older than ___ . Even when the result
of reordering individual terms is equivalent to the original sentence, we
will count the places as having a definite order and treat any reordering
of the terms filling them as a different sentence. So Dick is the same age
as Jane and Jane is the same age as Dick will count as different
sentences even though ___ is the same age as ___ is symmetric in the
sense that



σ is the same age as τ ⇔ τ is the same age as σ

for any terms σ and τ.

The only restriction on an analysis of a sentence into a predicate and
individual terms is that the contribution of an individual term to the
truth value of a sentence must lie only in its reference value—that is,
only in what it names if it names something and only if in the fact that
it names nothing if it does not and has the nil reference value
mentioned in 1.3.4 . This means that the predicates we will consider are
like truth-functional connectives in being extensional operations:
the extension of their output depends only on the extensions of their
inputs.

In the specific case of predicates, this requirement is sometimes spoken
of as a requirement of referential transparency. When evaluating
the truth-value of a sentence we sometimes look through individual
terms and pay attention only to their reference values while in other
cases we pay attention to the terms themselves or the ways in which
they refer to their values because differences of this sort make a
difference for the truth value of the sentence. For example, in deciding
the truth of The U. S. president is over 40 all that matters about the
individual term the U. S. president is who it refers to. On the other
hand, the sentence For the past two centuries, the U. S. president has
been over 35 is true while the sentence For the past two centuries,
George Bush has been over 35 is false—even when the terms the U. S.
president and George Bush refer to the same person. So, in this second
case, we must pay attention to differences between terms that have the
same reference value. When this is so the occurrences of these terms are
said to be referentially opaque; that is, we cannot look through them
to their reference values. The restriction on the analysis of sentences
into predicates and individual terms is then that we can count an
occurrence of an individual term as filling the place of a predicate only
when that occurrence is referentially transparent. Occurrences that are
referential opaque cannot be separated from the predicate and must
remain part of it.

Hints of idea of a predicate as an incomplete expression can be found in
the Middle Ages but it was first presented explicitly a little over a
century ago by Gottlob Frege. Frege applied the idea of an incomplete
expression not only to predicates but also to mathematical expressions
for functions. Indeed, Frege spoke of predicates as signs for a kind of
function, a function whose value is not a number but rather a truth
value. That is, just as a function like addition takes numbers as input
and issues a number as output, a predicate is a sign for a function that
takes the possible references of individual terms as input and issues a

truth value as output. It does this by saying something true or false
about its input.

We will speak of the truth-valued function associated with a 1-place
predicate as a property and speak of the function associated with a
predicate of two or more places as a relation. Occasionally, we will
want to speak of properties and relations collectively; we will use the
term attribute for this. Thus a predicate is a sign for an attribute in the
way a truth-functional connective is a sign for a truth function.

Just as a truth-functional connective can be given a truth table, the
extensionality of predicates means that a table can capture the way the
truth values of the their output sentences depend on the reference values
of their input. For example, consider the predicate __ divides __
(evenly). Just as there can be addition or multiplication tables
displaying the output of arithmetic functions for a limited range of
input, we can give a table indicating the output of the relation expressed
by this predicate. For the first half dozen positive integers, we would
have the table shown below. Here the input for the first place of the
predicate is shown by the row labels at the left and the input for the
second place by the column labels at the top. The first row of the table
then shows that 1 divides all six integers evenly, the second row shows
that 2 divides only 2, 4, and 6 evenly, and the final column shows that
each of 1, 2, 3, and 6 divides 6 evenly.

divides  1  2  3  4  5  6
1  T T  T  T  T  T
2  F T  F  T  F  T
3  F F  T  F  F  T
4  F F  F  T  F  F
5  F F  F  F  T  F
6  F F  F  F  F  T

Of course, this table does not give a complete account of the meaning of
the predicate; and, for many predicates, no finite table could. But such
tables like this will still be of interest to us because we will consider
cases where there are a limited number of reference values and, in such
cases, tables can give full accounts of predicates.

As was noted in 1.3.4 , we assume that sentences have truth values even
when they contain terms that do not refer to anything. This means that
we must assume that predicates yield a truth value as output even the
nil value is part of their input; that is, we assume that predicates are
total. The truth value that is issued as output when the input includes
the nil value is usually not settled by the ordinary meaning of an English
predicate. It is analogous to the supplements to contexts of use



suggested in 1.3.2  as a way of handling cases of vagueness. As in that
case, we try to avoid making anything depend on the particular output
in cases of undefined input but instead look at relations among
sentences that hold no matter how such output is stipulated.
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6.1.3. Identity

Although all the connectives that figured in our analyses of logical form
received special notation and had logical properties we studied, only one
predicate will count as logical vocabulary in this sense. Other
predicates and all unanalyzed individual terms will be, like unanalyzed
component sentences, part of the non-logical vocabulary which is
assigned a meaning only by an interpretation.

The predicate that is part of our logical vocabulary will be referred to as
identity. It is illustrated in the following sentences:

George Bush is the U.S. president 
The winner was Funny Cide 

n = 3 
The morning star and the evening star are the same thing.

We will refer to such sentences as equations; they constitute a
particular kind of predication.

In our symbolic notation, we will follow the third example and use the
sign = to mark identity. As English notation, we will use the word is.
We will represent unanalyzed individual terms by lower case letters, so
we can analyze the sentences above as follows:

George Bush is the U.S. president 
George Bush = the U.S. president

g = p 
g is p

[g: George Bush; p: the U.S. president]

The winner was Funny Cide 
the winner = Funny Cide

w = f 
w is f

[f: Funny Cide; w: the winner]

n = 3

n = t 
n is t

[n: n; t: 3]



The morning star and the evening star are the same thing
the morning star = the evening star

m = e 
m is e

[m: the morning star; e: the evening star]
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6.1.4. Abstracts

When we recognize an equation, we know immediately that it is a two-
place predication; but, in other cases, identifying the places of a
predicate is one of the chief tasks in analyzing a predication. A full
analysis of a predication will identify one place in the predicate for each
individual term appearing in the predication (more precisely, for each
occurrence of an individual term satisfying the requirement referential
transparency). When giving an analysis of an English sentence, it is
natural also to regard the order of the places of the predicate we identify
as being the same as the order in which the terms filling them appear in
the English sentences. But this way of associating places of a predicate
with individual terms in its English output is not required by the
concept of a predicate. And, even though we will not make use of the
freedom to depart from it in our analyses, we will want to allow
intentional interpretations of symbolic predications to have full freedom
in this regard.

For this reason, we need notation for predicates that will allow us to
specify an order for the places of a predicate that is different from the
order of blanks they correspond to and that will allow us to associate a
given place with more than one blank. What we will use is an extension
of the ordinary algebraic use of variables. It is a simple idea that was
used by Frege but it was first studied extensively by the American
logician Alonzo Church (1903-1995) in the 1930s, and it is his notation
for it that has become standard. The usual form of definition for a
function—for example,

f(x, y) = x2 + 3xy + 1

gives a name to the function and uses a variable or variables to indicate
the input values, with the output specified by an algebraic formula. Such
definition might be read f is the function which, when given input x and

y, yields the output x2 + 3xy + 1. Church’s notation, the notation of
lambda abstraction, provides a symbolic version of the definite
description following is in the English definition above. Using this
notation, the symbolic definition could be written as

f = λxy (x2 + 3xy + 1)

That is, λxy (x2 + 3xy + 1) can be read as the function which, when

given input x and y, yields the output x2 + 3xy + 1. The notation of
lambda abstraction thus describes a function without introducing a
name for it. This idea has been important in the development of



computer programming languages and, in that context, the right-hand
side of the second equation taken by itself would now often be described
as an “anonymous function”; so, when it is expressed in the notation of
lambda abstraction, the defining equation specifies a function
anonymously and then assigns it the name “f.”

Since the variables x and y might appear in any order and any number
of times in the expression specifying the output, this sort of notation
provides the kind of flexibility we want in specifying predicates. For
example, we can write

λxy (y told x about y)

for a predicate that, when given the input Ann and Bill yields the output
Bill told Ann about Bill—or, more idiomatically, Bill told Ann about
himself. As another example, note that the fullest and most natural
analysis of this output sentence would instead see it as the output of the
predicate

λxyz (x told y about z)

when it is given as its input the names Bill, Ann, and Bill again (where
the second “Bill” is the same name again and not merely the same
letters; that is, it is not the name of another person).

We will refer to such an expression as an abstract and, more
specifically as a predicate abstract when its output is a sentence. The
general form of an abstract with n places is

λx1 ... xn (... x1 ... xn ...)

λ-operator body

It has of two parts, a lambda operator consisting of the letter λ
followed by a list of n variables and, as its body, an expression formed
drawing on these variables and other vocabulary. The variables need not
actually appear in the body (to allow for lambda abstracts that achieve
the effect of definitions like f(x) = 2); when they do appear, their
occurrences in the body are said to be bound to the lambda operator.
When the abstract is a predicate abstract, it might be read as

the attribute that x1 ... xn have when it is true that ... x1 ... xn ...

We might take an abbreviated version of this reading as English
notation for predicate abstracts:

the attribute of x1 ... xn that ... x1 ... xn ...

In case of the first predicate abstract above, we would have the following
symbolic form, English reading, and English notation:

λxy (y told x about y) 
the attribute that x and y have when it is true that y told x about y 

the attribute of x and y that y told x about y

The English notation for abstracts is further from standard English than
was the English notation we used for connectives and we will use it less
often.

Variables have the grammatical status of individual terms but have no
reference values. Until it is bound to a lambda operator, a variable is
little more than a different way of marking a blank in a sentence. It does
more than a simple line only because it indicates that the blank is one
that could be linked to the place of a predicate. When it is bound, a
variable functions more actively, but its function is merely to mark a
correspondence between the place of a predicate and a blank in a
sentence. Because of this, an older terminology referred to bound
variables as “apparent variables.” And a less convenient but clearer
notation would replace these variables by a more direct indication of the
correspondence that they mark—e.g., by lines linking places after the
initial λ with locations in the body, as in the following alternative to the
first example above:

λxy (y told x about y)
 
      
λ  ( told about )

In the latter diagram, lines show where occurrences of the terms serving
as input should be placed in the body in order to form the output. In
the lambda abstract, the same thing is indicated by the correspondence
between the variables in the lambda operator and the variables marking
blanks in the body.

Because bound variables only mark a correspondence between locations
in the λ-operator and the body of the abstract, the bound variables of
different abstracts have no connection with one another. This means
that, for example, the following abstracts express the same predicate:

λxy (y told x about y) 
λyz (z told y about z)

Each says that for any input terms τ and υ (in that order), the output
sentence should be υ told τ about υ.

We will refer to as alphabetic variants expressions, like the two



abstracts above, that differ only in the particular variables they use to
link a lambda operator to places in the body of an abstract. Notice that,
although the variable y appears in both, it would be replaced by a
different one of the input terms in each case. Because the identity and
difference of variables matters only for establishing links within an
abstract, there is no connection between occurrences of a variable in
different abstracts.

English has devices which function like bound variables. In the general
case, an abstract might be stated fully in English as follows:

λx1 ... xn (... x1 ... xn ...) 

the attribute that n things have when it is true that ... the first ... the
nth ...

In this form of words, the “n things” are understood to be given as a list
of (not necessarily distinct) things of length n and expressions like the
first, the second, and so on, refer back to locations in this list. The
description of the attribute tells when it is possessed by any such list of
things, so no definite list of things is in question; and the expressions
the first, etc., that refer back to list locations make no definite reference
outside the sentence. In short, expressions like the first function here
like pronouns. This may be clearer if we consider the case of a one-place
predicate abstract along with a comparable English expression:

λx (Tom bought x) 
the property that a thing has when it is true that Tom bought it

The English fills the blank marked by x in the body of the abstract with
a pronoun it that has a thing as its antecedent. Since a thing makes no
definite reference, neither does the pronoun; the pronoun “refers back”
to its antecedent only in the sense that their references are linked in
their indefiniteness: they are not indefinite in independent ways. The
general moral is that the variables used in abstracts are like pronouns,
and the lambda operators are like their antecedents. You should not
expect variables in the scope of different lambda operators to be linked
in their reference any more than you would expect this of pronouns with
different antecedents.

It is sometimes useful to consider the body of an abstract by itself. Just
as a variable is grammatically like an individual term but does not have
a reference value (not even the nil value), an expression like

x told y about z

that contains unbound variables is grammatically like a sentence but

does not say anything. It is merely a sentence with blanks that might
correspond to places of a predicate. The term formula is used for any
expression that is grammatically like a sentence, with the term
“sentence” reserved for formulas all of whose variables are bound (to
abstracts within the sentence). Since all formulas are grammatically like
sentences, the grammatical vocabulary applied to “sentences” in
previous chapters applies to all formulas. In particular, formulas can be
built from formulas by use of connectives, so formulas can be compound
and have components.

In particular, we can speak of an atomic formula. Now that we
analyze sentences and other formulas into components like predicates
and individual terms, the atomic formulas will no longer be simply the
unanalyzed sentences though those will still count as atomic. We will
also count as atomic any predication. Although predications are
compound and can even have formulas as components (though not as
immediate components), their role in derivations is sufficiently
analogous to that of unanalyzed sentences for it to make sense to put
them both in the same category. There is a way of building the analogy
into our syntactic categories: an unanalyzed sentence can be thought of
as a zero-place predicate, one that requires no input to yield a
sentence as output.
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6.1.5. Analyzing predications

In our symbolic notation for predications of non-logical predicates—that
is, for the predications that are not equations—the predicate will come
first followed by the individual terms that are its input. When the
predicate is expressed by an abstract, it will be enclosed in square
brackets, so we might begin an analysis of Bill told Ann about himself as
follows:

 Bill told Ann about himself
Identify (referentially transparent)
occurrences of individual terms within
the sentence, making sure they are all
independent by replacing pronouns by
their antecedents

Bill told Ann about Bill

Separate the terms from the rest of the
sentence

Bill told Ann about Bill 
Bill told Ann about Bill

Preserve the order of the terms, and
establish the order of the places of the
predicate by putting distinct variables
in the blanks left by the terms and
applying a lambda operator for these
variables

[λxyz (x told y about z)] Bill Ann Bill 
[λxyz (x told y about z)]

Surround the predicate abstract with
brackets to predicate it, forming a
sentence with blanks at the end

[λxyz (x told y about z)] Bill Ann Bill 
[λxyz (x told y about z)] Bill Ann Bill

Write the terms in the places of the
predicate abstract [λxyz (x told y about z)] Bill Ann Bill

Underlining will often be used, as it is here, to mark the places of
predicates when they are filled by English expressions.

In examples and answers to exercises, we will move directly from the
second of these steps to the last, so the process can be thought of as one
of removing terms, placing them (in order and with any repetitions)
after the sentence they are removed from, and filling the blanks left in
that sentence with distinct variables, applying a corresponding lambda
operator and surrounding it with brackets.

In general, an application of an n-place predicate θ to a series of n
individual terms τ1, ..., τn takes the form

θτ1...τn

and our English notation is this:

θ fits τ1, ..., ’n τn

The use of the verb fit here is somewhat artificial. It provides a short
verb that enables θτ1...τn to be read as a sentence, and it is not too hard

to understand it as saying that θ is true of τ1, ..., τn. Another artificial

aspect of this notation is the unemphasized form ’n, which is designed
to distinguish the use of and here to join the terms of a relation from its
use as a truth-functional connective. We will use the general notation 
θτ1...τn when we wish to speak of all predications, so we will take it to

apply to equations, too, even though the predicate = is written between
the two terms to which it is applied.

In our fully symbolic analyses, unanalyzed non-logical predicates will be
abbreviated by capital letters. This is consistent with our use of capital
letters for unanalyzed sentences and with the idea that such a sentence
amounts to a zero-place predicate. (When we add non-logical operations
that yield individual terms as output, they will be abbreviated by lower
case letters just as unanalyzed individual terms are.)

As was down in the display above, we will use the Greek letters θ, π, and
ρ to refer to stand for any predicates, so they may stand for single
letters, abstracts, or =. For the time being, all terms will be single letters
in our symbolic notation; but in the next section we will consider
compound terms, so we will use the Greek letters τ, σ, and υ to stand
for any terms, simple or compound.

If we continue the analysis of Bill told Ann about himself into fully
symbolic form, we would get the following:

Bill told Ann about himself 
Bill told Ann about Bill 

[λxyz (x told y about z)] Bill Ann Bill

Tbab 
T fits b, a, ’n b

[T: λxyz (x told y about z); a: Ann; b: Bill]

The abstract does not appear in the final analysis but it does appear in
the key. The entry

T: λxyz (x told y about z)

in the key identifies T as a predicate that, when applied to terms σ, τ, υ
(in that order) yields as output the sentence σ told τ about υ.

When sentences contain truth-functional structure, that structure should
be analyzed first; an analysis into predicates and individual terms



should begin only when no further analysis by connectives is possible.
Here is an example:

If either Ann or Bill was at the meeting, then Carol has seen
the report and will call you about it

Either Ann or Bill was at the meeting → Carol has seen the
report and will call you about it

(Ann was at the meeting ∨ Bill was at the meeting) 
→ (Carol has seen the report ∧ Carol will call you about the
report)

([λxy (x was at y)] Ann the meeting ∨ [λxy (x was at y)] Bill the
meeting) 
→ ([λxy (x has seen y)] Carol the report ∧ [λxyz (x will call y
about z)]Carol you the report)

(Aam ∨ Abm) → (Scr ∧ Lcor) 
if either A fits a ’n m or A fits b ’n m then both S

fits c ’n r and L fits c, o, ’n r

[A: λxy (x was at y); L: λxyz (x will call y about z); S: λxy (x
has seen y); a: Ann; b: Bill; c: Carol; m: the meeting; o: you;
r: the report]

When analyzing atomic sentences into predicates and terms be sure to
watch for repetitions of predicates from one atomic sentence to another;
such repetitions are an important part of the logical structure of the
sentence.

Since the notation for identity is different from that used for non-logical
predicates, you need to watch for atomic sentences that count as
equations. These will usually, but not always, be marked by some form
of the verb to be but, of course, forms of to be have other uses, too.
Consider the following example:

If Tom was told of the nomination, then if he was the winner
he wasn’t surprised

Tom was told of the nomination → if Tom was the winner he
wasn’t surprised

Tom was told of the nomination → (Tom was the winner →
Tom wasn’t surprised)

Tom was told of the nomination → (Tom was the winner → ¬
Tom was surprised)

[λxy (x was told of y)] Tom the nomination 
→ (Tom = the winner → ¬ [λx (x was surprised)] Tom)

Ltn → (t = r → ¬ St) 

if fits ’n then if is then not fits

[L: λxy (x was told of y); S: λx (x was surprised); t: Tom; n: the
nomination]

It is fairly safe to assume that a form of to be joining to individual terms
indicates an equation, but it is wise to always think about what is being
said: an equation is a sentence that says its component individual terms
have the same reference value. Notice also that identity does not appear
in the key to the analysis. That is because it is part of the logical
vocabulary; that is, it is like the connectives, which also do not appear in
keys.
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6.1.s. Summary

We move beyond truth-functional logic by recognizing complete
expressions  other than sentences and operations  other than
connectives. Our additions are motivated by a traditional description of
grammatical subjects  and predicates . The new complete expressions
are individual terms , whose function is to name. Given this idea, we
can define a predicate  as an operation that forms a sentence from one
or more individual terms.

A predicate  corresponds to an English sentence with blanks that might
be filled by terms. These blanks are the predicate’s places  and the
operation of filling them is predication . We will maintain something
analogous to truth-functionality by requiring that predicates be
extensional . This means that all places of a predicate must be
referentially transparent  (rather than referentially opaque ): when

judging the truth value of a sentence formed by the predicate, we must
be able see through the terms filling these places to what those terms
refer to. Thus, just as a connective expresses a truth function, a
predicate expresses a function that takes reference values as input and
issues truth values as output. Such a function may be called an
attribute —or, more specifically, a property  if it has one place and a
relation  if it has 2 or more. In symbolic notation, it takes the form σ = 
τ and, in English notation, it takes the form σ is τ.

While recognizing quite a variety of non-logical vocabulary  in our
analyses, we recognize only one new item of logical vocabulary , the
predicate identity . This is a 2-place predicate that forms an equation ,
which is true when its component terms have the same reference value.

Lambda abstraction  provides notation for linking the places of a
predicate to blanks in an English sentence. An expression formed using
it—which will have the general form λx1 ... xn (... x1 ... xn ...)—is an

abstract  (in this use, a predicate abstract ); it consists of a lambda
operator  applied to a parenthesized body . In English notation, a
predicate abstract takes the form the attribute of x1... xn that

... x1 ... xn ... . Variables in the body of an abstract are bound  to the

lambda operator. Expressions that establish the same patterns of
binding using different variables are alphabetic variants . They may be
thought of as pronouns whose antecedent is the lambda operator. An
expression (such as the body of an abstract) that has variables not
bound to lambda operators, is not a sentence  in the strict sense, but it
does count as a formula . Formulas have many of the syntactic

properties of sentences; in particular, they can be built from other
formulas using connectives. And we can distinguish as atomic formulas
not only unanalyzed sentences but all formulas that are predictions.
(Indeed, unanalyzed sentences can be thought of as predications of
zero-place predicates .)

In our symbolic notation, we use lower case letters to stand for
unanalyzed individual terms, the equal sign for identity, and capital
letters to stand for non-logical predicates. Non-logical predicates, both
capital letters and predicate abstracts are written in front of the terms
they apply to (with a predicate abstract enclosed in brackets), and = is
written between the terms to which it applies. In English notation,
predications other than equations are written as θ fits τ1, ..., ’n τn.
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6.1.x. Exercise questions

1. Analyze each of the following sentences in as much detail as
possible.

 a. Ann introduced Bill to Carol.

 b. Ann gave the book to either Bill or Carol.

 c. Ann gave the book to Bill and he gave it to Carol.

 d. Tom had the package sent to Sue, but it was returned to
him.

 e. Georgia will see Ed if she gets to Denver before Saturday.

 f. If the murderer is either the butler or the nephew, then I’m
Sherlock Holmes.

 g. Neither Ann nor Bill saw Tom speak to either Mike or
Nancy.

 h. Tom will agree if each of Ann, Bill, and Carol asks him.

2. Synthesize idiomatic English sentences that express the
propositions associated with the logical forms below by the
intensional interpretations that follow them.

 a. Wci ∧ Scl 
[S: λxy (x is south of y); W: λxy (x is west of y); c:
Crawfordsville; i: Indianapolis; l: Lafayette]

 b. Mab → Mba 
[M: λxy (x has met y); a: Ann; b: Bill]

 c. Iacb ∧ Iadb 
[I: λxyz (x introduced y to z); a: Alice; b: Boris; c: Clarice; d:
Doris]

 d. Wab ∧ Kabab 
[K: λxyzw (x asked y to write z about w); W: λxy (x wrote to
y); a: Alice; b: Boris]

 e. g = c → (f = s ∧ p = t) 
[c: the city; f: football; g: Green Bay; p: the Packers; s: the
sport; t: the team]
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6.1.xa. Exercise answers

1. a. Ann introduced Bill to Carol
[λxyz (x introduced y to z)] Ann Bill Carol

Iabc 
I fits a, b, ’n c

[I: λxyz (x introduced y to z); a: Ann; b: Bill; c: Carol]
 b. Ann gave the book to either Bill or Carol

Ann gave the book to Bill ∨ Ann gave the book to Carol
[λxyz (x gave y to z)] Ann the book Bill ∨ [λxyz (x gave y to z)]

Ann the book Carol

Gakb ∨ Gakc 
either G fits a, k, ’n b or G fits a, k, ’n c

[G: λxyz (x gave y to z); a: Ann; b: Bill; c: Carol; k: the book]
 c. Ann gave the book to Bill and he gave it to Carol

Ann gave the book to Bill ∧ Bill gave the book to Carol
[λxyz (x gave y to z)] Ann the book Bill ∧ [λxyz (x gave y to z)]

Bill the book Carol

Gakb ∧ Gbkc 
both G fits a, k, ’n b and G fits b, k, ’n c

[G: λxyz (x gave y to z); a: Ann; b: Bill; c: Carol; k: the book]
 d. Tom had the package sent to Sue, but it was returned to him

Tom had the package sent to Sue ∧ the package was returned
to Tom

[λxyz (x had y sent to z)] Tom the package Sue ∧ [λxy (x was
returned to y)] the package Tom

Htps ∧ Rpt 
both H fits t, p, ’n s and R fits p ’n t

[H: λxyz (x had y sent to z); R: λxy (x was returned to y); p:
the package; s: Sue; t: Tom]

 e. Georgia will see Ed if she gets to Denver before Saturday
Georgia will see Ed ← Georgia will get to Denver before

Saturday
[λxy (x will see y)] Georgia Ed ← [λxyz (x will get to y before

z)] Georgia Denver Saturday

Sge ← Ggds 
Ggds → Sge 



if G fits g, d, ’n s then S fits g ’n e

[G: λxyz (x will get to y before z); S: λxy (x will see y); d:
Denver; e: Ed; g: Georgia; s: Saturday]

 f. If the murderer is either the butler or the nephew, then I’m
Sherlock Holmes

the murderer is either the butler or the nephew → I’m Sherlock
Holmes

(the murderer is the butler ∨ the murderer is the nephew) → I
= Sherlock Holmes

(the murderer = the butler ∨ the murderer = the nephew) → i
= s

(m = b ∨ m = n) → i = s 
if either m is b or m is n then i is s

[b: the butler; i: I; m: the murderer; n: the nephew; s: Sherlock
Holmes]

 g. Neither Ann nor Bill saw Tom speak to either Mike or Nancy
¬ (Ann saw Tom speak to either Mike or Nancy ∨ Bill saw

Tom speak to either Mike or Nancy)
¬ ((Ann saw Tom speak to Mike ∨ Ann saw Tom speak to

Nancy) ∨ (Bill saw Tom speak to Mike ∨ Bill saw Tom speak
to Nancy))

¬ (([λxyz (x saw y speak to z)] Ann Tom Mike ∨ [λxyz (x saw y
speak to z)] Ann Tom Nancy) ∨ ([λxyz (x saw y speak to z)]
Bill Tom Mike ∨ [λxyz (x saw y speak to z)] Bill Tom Nancy))

¬ ((Satm ∨ Satn) ∨ (Sbtm ∨ Sbtn)) 
not either either S fits a, t, ’n m or S fits a,t, ’n n

or either S fits b,t, ’n m or S fits b,t, ’n n

[S: λxyz (x saw y speak to z); a: Ann; b: Bill; m: Mike; n:
Nancy; t: Tom]

 h. Tom will agree if each of Ann, Bill, and Carol asks him
Tom will agree ← each of Ann, Bill, and Carol will ask Tom
Tom will agree ← ((Ann will ask Tom ∧ Bill will ask Tom) ∧

Carol will ask Tom)
[λx (x will agree)] Tom ← (([λxy (x will ask y)] Ann Tom ∧

[λxy (x will ask y)] Bill Tom) ∧ [λxy (x will ask y)] Carol
Tom)

Gt ← ((Aat ∧ Abt) ∧ Act) 
((Aat ∧ Abt) ∧ Act) → Gt 

if both both A fits a ’n t and A fits b ’n t and A
fits c ’n t then G fits t

[A: λxy (x will ask y); G: λx (x will agree); a: Ann; b: Bill; c:
Carol; t: Tom] 
The function of each here is to indicate a group of two-place
predication rather than a single four-place predicate λxyzw (x,
y, and z will ask w), which is what would be required in order
to express instead the idea of Ann, Bill, and Carol making the
request as a group.

2. a. [λxy (x is west of y)] Crawfordsville Indianapolis 
∧ [λxy (x is south of y)] Crawfordsville Lafayette

Crawfordsville is west of Indianapolis ∧ Crawfordsville is
south of Lafayette

Crawfordsville is west of Indianapolis and south of Lafayette
 b. [λxy (x has met y)] Ann Bill → [λxy (x has met y)] Bill Ann 

Ann has met Bill → Bill has met Ann 
If Ann has met Bill then he has met her

 c. [λxyz (x introduced y to z)] Alice Clarice Boris 
∧ [λxyz (x introduced y to z)] Alice Doris Boris

Alice introduced Clarice to Boris ∧ Alice introduced Doris to
Boris

Alice introduced Clarice and Doris to Boris
 d. [λxy (x wrote to y)] Alice Boris 

∧ [λxyzw (x asked y to write z about w)] Alice Boris Alice
Boris

Alice wrote to Boris ∧ Alice asked Boris to write Alice about
Boris

Alice wrote to Boris ∧ Alice asked Boris to write her about
himself

Alice wrote to Boris and asked him to write her about himself
 e. g = c → (f = s ∧ p = t)

Green Bay = the city → (football = the sport ∧ the Packers =
the team)

Green Bay is the city → (football is the sport ∧ the Packers are
the team)

Green Bay is the city → football is the sport and the Packers
are the team

If Green Bay is the city, then football is the sport and the
Packers are the team
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