
6.1.s. Summary

We move beyond truth-functional logic by recognizing complete
expressions other than sentences and operations other than
connectives. Our additions are motivated by a traditional description of
grammatical subjects and predicates . The new complete expressions
are individual terms , whose function is to name. Given this idea, we
can define a predicate as an operation that forms a sentence from one
or more individual terms.

A predicate corresponds to an English sentence with blanks that might
be filled by terms. These blanks are the predicate’s places and the
operation of filling them is predication . We will maintain something
analogous to truth-functionality by requiring that predicates be
extensional . This means that all places of a predicate must be
referentially transparent (rather than referentially opaque): when

judging the truth value of a sentence formed by the predicate, we must
be able see through the terms filling these places to what those terms
refer to. Thus, just as a connective expresses a truth function, a
predicate expresses a function that takes reference values as input and
issues truth values as output. Such a function may be called an
attribute —or, more specifically, a property if it has one place and a
relation if it has 2 or more. In symbolic notation, it takes the form σ =
τ and, in English notation, it takes the form σ is τ.

While recognizing quite a variety of non-logical vocabulary in our
analyses, we recognize only one new item of logical vocabulary , the
predicate identity . This is a 2-place predicate that forms an equation ,
which is true when its component terms have the same reference value.

Lambda abstraction provides notation for linking the places of a
predicate to blanks in an English sentence. An expression formed using
it—which will have the general form λx1 ... xn (... x1 ... xn ...)—is an

abstract (in this use, a predicate abstract); it consists of a lambda
operator applied to a parenthesized body . In English notation, a
predicate abstract takes the form the attribute of x1... xn that

... x1 ... xn Variables in the body of an abstract are bound to the

lambda operator. Expressions that establish the same patterns of
binding using different variables are alphabetic variants . They may be
thought of as pronouns whose antecedent is the lambda operator. An
expression (such as the body of an abstract) that has variables not
bound to lambda operators, is not a sentence in the strict sense, but it
does count as a formula . Formulas have many of the syntactic

properties of sentences; in particular, they can be built from other
formulas using connectives. And we can distinguish as atomic formulas
not only unanalyzed sentences but all formulas that are predictions.
(Indeed, unanalyzed sentences can be thought of as predications of
zero-place predicates .)

In our symbolic notation, we use lower case letters to stand for
unanalyzed individual terms, the equal sign for identity, and capital
letters to stand for non-logical predicates. Non-logical predicates, both
capital letters and predicate abstracts are written in front of the terms
they apply to (with a predicate abstract enclosed in brackets), and = is
written between the terms to which it applies. In English notation,
predications other than equations are written as θ fits τ1, ..., ’n τn.

Glen Helman 15 Oct 2004

