
4.2. Arguing from and for
alternatives

4.2.0. Overview

Because a disjunction normally says less than its components while a
conjunction says more, the two connectives play very different roles in
entailment.

4.2.1. Proofs by cases  
Since a disjunction says only what is said by both its disjuncts, it
entails only what is entailed by both of them.

4.2.2. Proving disjunctions  
Since a disjunction makes a relatively weak claim, it is easy to state a
sound rule to plan for it, but a safe rule is harder.

4.2.3. Further examples  
There are now many choices to be regarding the order in which rules
are applied, and they can make significant differences in the length of
derivations.

4.2.4. The duality of conjunction and disjunction  
Conjunction and disjunction are, in a certain formal sense, mirror
images of one another.
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4.2.1. Proofs by cases

The validity of the argument

Sam didn’t praise the proposal without granting its significance 
Sam didn’t condemn the proposal without granting its significance 

Sam either praised or condemned the proposal
Sam granted the proposal’s significance.

can be accounted for by the validity of the following two arguments:

Sam didn’t praise the proposal
without granting its significance 
Sam didn’t condemn the proposal
without granting its significance 

Sam praised the proposal
Sam granted the proposal’s

significance

 

Sam didn’t praise the proposal
without granting its significance 
Sam didn’t condemn the proposal
without granting its significance 

Sam condemned the proposal
Sam granted the proposal’s

significance.

Each replaces the disjunctive third premise of the original argument by
one of its two components. This way of establishing an entailment is
sometimes called a proof by cases. In this example, the two cases are
Sam having praised the proposal and Sam having condemned it. Since
the disjunction says all and only what is common to these two
alternatives, something follows from the disjunction in isolation or in
addition to other premises just in case it follows from each one of these
alternatives under similar circumstances.

More formally, the idea behind proofs by cases is captured by a law for
disjunction as a premise:

Γ, φ ∨ ψ ⇒ χ if and only if both Γ, φ ⇒ χ and Γ, ψ ⇒ χ

To see why this law is true note that to divide the members of Γ and φ ∨ 
ψ on the one hand from χ on the other, a possible world must make φ ∨ 
ψ and all members of Γ true while making χ false. To do this it must
make at least one of φ and ψ true, and that means that it must divide at
least one of the arguments Γ, φ / χ and Γ, ψ / χ. So, to say that the
original argument is valid is to say that neither of these latter arguments
can have its premises and alternatives divided—that is, that both are
valid.

This idea appears in derivations by way of a rule we will call Proof by
Cases (PC); it is shown in Figure 4.2.1-1.



│...
│φ ∨ ψ
│...
│
││...
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││χ
│...

│...
│φ ∨ ψ n
│...
│
││...
││
│││φ
││├─
│││
││├─
│││χ n
││
│││ψ
││├─
│││
││├─
│││χ n
│├─

n PC││χ
│...

Fig. 4.2.1-1. Developing a derivation by exploiting a disjunction at stage n.

PC divides a gap into two new gaps. Each is a case argument that
retains the original goal but adds one of the components of the
disjunction as a supposition. The function of each supposition is to
specify one of the two alternative cases in which the original disjunction
is true. A supposition is required because, although our premises tell us
that at least one of the disjuncts is true, we do not know which that is,
and the one that is true will, in general, vary among the possible worlds
in which the resources of the original gap are true.

Here is a derivation which uses this rule to provide a proof for example
with which we began.

│¬ (C ∧ ¬ G) (7)
│P ∨ C 1
├─
││P (3)
│├─
│││¬ G (3)
││├─

3 Adj│││P ∧ ¬ G X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 IP ││G 1
│
││C (6)
│├─
│││¬ G (6)
││├─

6 Adj│││C ∧ ¬ G X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 IP ││G 1
├─

1 PC │G

[C: Sam condemned the proposal; G: Sam granted the proposal’s
significance; P: Sam praised the proposal]

In the two case arguments, we suppose first that Sam praised the
proposal and then that he condemned it and, in each case, we show that
he granted the proposal’s significance (by showing that he could not
have failed to grant it). Since at least one of these two cases must be true
whenever the premises are all true, we know that the conclusion must
be true also.
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4.2.2. Proving disjunctions

Now let us look at disjunctions as conclusions. An entailment Γ ⇒ φ ∨ ψ
will hold if and only if φ ∨ ψ is true in every possible world in which all
members of Γ are true. But this is to say that at least one of φ and ψ is
true in every such world, and that is a way of saying that Γ renders φ
and ψ jointly exhaustive. So we can state the following principle:

Γ ⇒ φ ∨ ψ if and only if Γ ⇒ φ, ψ

Since the right-hand side has two alternatives, this is not a law
concerning entailment alone, and we will not take the principle in this
form as our account of the role of disjunctions as conclusions. However,
we can use the basic law for relative exhaustiveness to restate the right-
hand side as claim of entailment.

Indeed we have two ways of doing that. If φ and φ′ are contradictory, we
can say

Γ ⇒ φ ∨ ψ if and only if Γ, φ′ ⇒ ψ

and if ψ and ψ′ are contradictory, we can say

Γ ⇒ φ ∨ ψ if and only if Γ, ψ′ ⇒ φ

In short, a disjunction is a valid conclusion from premises Γ if and only
if adding to our premises a sentence contradictory to one disjunct
enables us to validly conclude the other disjunct.

In stating a principle for disjunction we will limit ourselves to cases
where a sentence and its negation are the pair of contradictory
sentences. But, when the disjuncts are already negative, that leaves us
with two choices for each of the pairs φ and φ′ and ψ and ψ′ since each
of φ′ and ψ′ might be the result of either adding or dropping a negation.
To avoid stating four principles to cover each of these possibilities, we
will introduce some notation to capture the general idea of obtaining a
contradictory sentence by either adding or dropping a negation. Let the
notation φ (read φ bar) stand for ¬ φ when φ is not a negation and, when

φ is the negation ¬ χ, for either ¬ ¬ χ or χ. That is, φ is the result of

either negating or, if possible, de-negating φ. We will say that φ bars φ
or is the barring of φ.

Then φ and φ form a contradictory pair consisting of a sentence and its
negation in one order or the other, so we may formulate our law for
disjunction as a conclusion with only two statements:

(i) Γ ⇒ φ ∨ ψ if and only if Γ, φ ⇒ ψ, and 

(ii) Γ ⇒ φ ∨ ψ if and only if Γ, ψ ⇒ φ

When these are implemented as derivation rules, they give us two ways
of planning for a disjunctive goal. The two rules are shown as alternative
developments in Figure 4.2.2-1. We will refer to both forms of the rule
as Proof of Exhaustion (PE) since it is a way of showing that φ and ψ,
taken together, exhaust all possibilities left open by the premises.

│...
│
││...
││
││
││
││
││
││
│├─
││φ ∨ ψ
│...

│...
│
││...
││
│││φ
││├─
│││
││├─
│││ψ n
│├─

n PE││φ ∨ ψ
│...

OR

│...
│
││...
││
│││ψ
││├─
│││
││├─
│││φ n
│├─

n PE││φ ∨ ψ
│...

Fig. 4.2.2-1. Alternative ways of developing a derivation by planning for a
disjunction at stage n.

In each way of developing a gap, we set one of the components of the
disjunction as a new goal and add the barring (i.e., negation or de-
negation) of the other component as a supposition. Both forms of
planning will lead to the same answer in the end, but one or the other
may be more efficient in a particular case. There is no simple way of
predicting which choice is best but the following rules of thumb may
help:

(i) if only one component is a negation, choose it to form the
supposition (by dropping its negation); 
(ii) if only one component is a non-negative compound choose it as
the goal; 
(iii) if only one component seems likely to figure in closing the gap
and it is not a negation, choose it as the goal.

In many cases none of these suggestions will apply; but, in most such
cases, neither one of the two forms of the rule is better than the other.

The supposition in PE may be described as hypothetical, and this
indicates a third role that suppositions may play. In reductio arguments
and indirect proofs, we make suppositions with the aim of showing that
they are false. In a proof by cases we make a pair of suppositions at least



one of which we take to be true. In PE on the other hand, a supposition
is made with no expectation of either truth or falsity. It is made instead
simply to establish a connection between it and another claim. As we
argue within the scope of the supposition, we are making a
hypothetical argument, one that explores the implications of the
supposition in order to establish a connection between it and another
claim. The conclusion we draw to end the scope of the supposition
states this connection between the two claims. Here, it is φ ∨ ψ, so the
connection between the two sentences is at least one of them is true.
This is a statement made categorically; this, it no longer falls under the
supposition.

There is some danger of getting tangled in the terminology here, so let’s
pause and look at it more closely. The terms hypothetical and
categorical derive from an ancient classification of sentences into the
“categorical,” the “disjunctive,” and the “hypothetical”. Since
disjunctions and “hypothetical sentences” (the conditionals to be
studied in the next chapter) are ways of hedging claims, the term
categorical has acquired the meaning ‘unhedged’. Now the disjunctive
goal to which we applied this term above certainly hedges each of its
components, so it does not state them categorically. But, while sentences
along the scope line of the hypothetical argument are stated only “under
the hypothesis” that is the supposition of this argument, the disjunction
following the argument is no longer hedged in this way, which means
that it is stated categorically with respect to that supposition (though it
may still fall in the scope of earlier ones). In short, when the scope line
of a hypothetical argument ends, a hedged statement (of a possibly
unhedged sentence) is converted into an unhedged statement of a
sentence that incorporates a hedge.

As an example of this rule, consider the argument below, understanding
X was out to be the denial of X was home. The validity of this argument
can be established by the English derivation whose first stage is shown
at the right.

 Ann and Bill were not both home
without the car being in the
driveway

The car was not in the driveway
Either Ann or Bill was out

 │¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
││
│├─
││¬ B 1
├─

1 PE│¬ A ∨ ¬ B

The overall form is that of a hypothetical argument in which we suppose
that Ann was at home (a supposition that is one of the two possibilities
for ¬ A) and establish under this hypothesis that Bill was out. This
shows the connection between Ann being out and Bill being out that we
claim when we state categorically that at least one was out. When the
hypothetical argument ends, we move from a statement of ¬ B under the
hypothesis A to a statement of ¬ A ∨ ¬ B that is hedged by the added
alternative ¬ A but that is no longer stated under the hypothesis A.

Notice that if we continue the derivation

│¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
│││B
││├─
│││
││├─
│││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

we plan for the goal ¬ B by supposing B for reductio. And this example
illustrates the different functions of the two sorts of supposition. We
suppose that Ann is home in order to show that ¬ B (Bill is out) is true
in all possible worlds in which ¬ A (Ann is out) is false. We go on to
show that ¬ B is true in these cases by showing that to suppose further
that B would rule out all possibilities—i.e., that this supposition would
be absurd when added to our premises and the supposition A. From one
point of view, both suppositions are merely added assumptions. But we
add the first in order to show that, by adding the second, we would go
too far.
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4.2.3. Further examples

Both disjunction rules are illustrated by
the derivation at the right, in which
one grouping of a three-part
disjunction is shown to entail the other.
Choices between the two ways of
planning for a goal disjunction were
made at stages 2, 3, 5, 6, and 7 in
accordance with the rules of thumb
given earlier. The way each choice was
made helped to shorten the derivation
—though in each case only by a few
steps. This derivation is contrived to
provide several examples of PE; instead
we might have planned for the initial
goal at stage 1 before exploiting the
premise rather than planning for it
separately in each of three gaps.

 │A ∨ (B ∨ C) 1
├─
││A (4)
│├─
│││¬ C
││├─
││││¬ B
│││├─
││││●
│││├─

4 QED ││││A 3
││├─

3 PE │││A ∨ B 2
│├─

2 PE ││(A ∨ B) ∨ C 1
│
││B ∨ C 5
│├─
│││B (8)
││├─
││││¬ C
│││├─
│││││¬ A
││││├─
│││││●
││││├─

8 QED │││││B 7
│││├─

7 PE ││││A ∨ B 6
││├─

6 PE │││(A ∨ B) ∨ C 5
││
│││C (10)
││├─
││││¬ (A ∨ B)
│││├─
││││●
│││├─

10 QED││││C 9
││├─

9 PE │││(A ∨ B) ∨ C 5
│├─

5 PC ││(A ∨ B) ∨ C 1
├─

1 PC │(A ∨ B) ∨ C

The scale of the difference you can expect to result from a choice
between the two forms of PE is illustrated by the two derivations below.

│B (3)
├─
││¬ A
│├─
│││¬ C
││├─
│││●
││├─

3 QED│││B 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

 │B (5)
├─
││¬ (B ∨ C) 3
│├─
│││¬ A
││├─
│││││¬ C
││││├─
│││││●
││││├─

5 QED│││││B 4
│││├─

4 PE ││││B ∨ C 3
││├─

3 CR │││⊥ 2
│├─

2 IP ││A 1
├─

1 PE │A ∨ (B ∨ C)

Each chooses a different way of planning for the initial goal at stage 1.
Notice that in the second, which makes the less efficient choice, we are
led back to the goal B ∨ C in a couple of stages.
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4.2.4. The duality of conjunction and
disjunction

While a conjunction and a disjunction formed from the same components
are certainly not contradictories, the two connective are opposites in
another sense, the one for which we have used the term dual.

This duality can be expressed in one way by saying that when conjunction
and disjunction are applied to pairs of sentences whose corresponding
components are contradictory, the results are contradictory. As an example,
let us again take X was home and X was out to be contradictories. Now to
get a sentence contradictory to Ann and Bill were home, we cannot take
Ann and Bill were out since both sentences would be false if one of Ann
and Bill was home and the other out. To get a contradictory to Ann and
Bill were home we need to leave open those possibilities, and Ann or Bill
was out will do this. That is, Ann and Bill were home is contradictory to
Ann or Bill was out and, similarly, Ann or Bill was home is contradictory
to Ann and Bill were out. And this is to say that ¬ Ann and Bill were home
⇔ Ann or Bill was out and that ¬ Ann or Bill was home ⇔ Ann and Bill
were out.

When they are limited to the cases of contradictoriness captured by the bar
notation, these patterns of equivalence are know as De Morgan’s laws:

¬ (φ ∧ ψ) ⇔ φ ∨ ψ 

¬ (φ ∨ ψ) ⇔ φ ∧ ψ

Although these are named after Augustus De Morgan (1806-1871), they
were known long before his time.

Another way to see the duality of conjunction and disjunction is to look at
the principles that hold for them with respect to relative exhaustiveness.
The table below follows the pattern of the one given for ⊤ and ⊥ in 1.4.6 .

as a premise as an alternative

Conjunction Γ, φ ∧ ψ ⇒ Δ iff Γ, φ, ψ ⇒ Δ
Γ ⇒ φ ∧ ψ, Δ iff

both Γ ⇒ φ, Δ and Γ ⇒ ψ, Δ

Disjunction
Γ, φ ∨ ψ ⇒ Δ iff 

both Γ, φ ⇒ Δ and Γ, ψ ⇒ Δ
Γ ⇒ φ ∨ ψ, Δ iff Γ ⇒ φ, ψ, Δ

(Here iff is used as an abbreviation of if and only if.) Notice that the
analogy between the upper left and lower right and between the lower left
and upper right. That is, conjunction behaves as a premise in much the
way disjunction behaves as an alternative and disjunction behaves as
premise in much the way conjunction behaves as an alternative.

Since ⊤ and ⊥ are paired as duals and so are conjunction and disjunction,
you might wonder what serves as the dual to negation. In fact, it is dual to
itself. If we negate each of a pair of contradictory sentences, the results are
contradictory; that is, we do not need to apply different operations to the
two contradictory sentences in order for the results to be contradictory.
Notice also that the behavior of negation as a premise is analogous to its
behavior as an alternative.

Γ, ¬ φ ⇒ Δ iff Γ ⇒ φ, Δ 
Γ ⇒ ¬ φ, Δ iff Γ, φ ⇒ Δ

Having a negated premise or alternative is equivalent to having the
unnegated sentence in the opposite role.

As was noted in 1.4.6, the term duality points to a certain sort of two-for-
one principle. In particular, it is used when there is some way of associating
vocabulary items as pairs so that replacing one member of a pair by the
other throughout any truth will yield another truth. In our case, we have
the associations

⇒ ⇐

⇔ ⇔

⊤ ⊥

¬ ¬

∧ ∨

The equivalence arrow is dual to itself because it amounts to having both 
⇒ and ⇐; and if each of them is reversed, we still have both.

Let us apply this association in a couple of examples. The principle

Γ, φ ∧ ψ ⇒ Δ iff Γ, φ, ψ ⇒ Δ

(the principle on the upper left of the table above) turns into

Γ, φ ∨ ψ ⇐ Δ iff Γ, φ, ψ ⇐ Δ

which (once it is rewritten with premises on the left and alternatives on the
right and the premises and alternatives re-ordered) amounts to

Δ ⇒ φ ∨ ψ, Γ iff Δ ⇒ φ, ψ, Γ

This last statement is the principle of the lower right of the table with the
variables Γ and Δ interchanged. And the principle

Γ, ¬ φ ⇒ Δ iff Γ ⇒ φ, Δ

becomes



Γ, ¬ φ ⇐ Δ iff Γ ⇐ φ, Δ

or

Δ ⇒ ¬ φ, Γ iff Δ, φ ⇒ Γ

which is the second of the principles for negation stated above with Γ and 
Δ interchanged. In the next section, we will see more examples of such
transformations between principles on the basis of dual concepts, but we
have already seen other examples: each of the two forms of De Morgan’s
laws may be transformed into the other by this sort of association.
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4.2.s. Summary

A disjunction φ ∨ ψ is false only when its disjuncts are both false, and it
thus says only what is their shared content. The law for disjunction as a
premise  tell us that we can establish a conclusion using such a premise
by showing that it is entailed by each of the disjuncts (given our other
premises). This way of exploiting a disjunction is known as a proof by
cases , and it appears in our system of derivations as a rule Proof by
Cases (PC)  that leads us to divide a gap into two case arguments , each
of which takes over the original goal and adds one of the two disjuncts
as a supposition.

To show that a disjunction is a valid conclusion, we must show that its
disjuncts are rendered jointly exhaustive by the premises. We can do this
by showing that one of the disjuncts will follow if we add the
contradictory of the other to our premises. In order conveniently refer to
a contradictory obtained by either negating or de-negating a sentence,
we use the bar notation  to indicate a sentence φ that either is the
negation of φ or has φ as its negation. The law for disjunction as a
conclusion then tells us that we can conclude a disjunction if we can
conclude one disjunct provided we take the barring of the other disjunct
as a premise. The rule implementing this idea is Proof of Exhaustion .
It enables us to conclude a disjunction from an argument that may be
called hypothetical  since it draws a conclusion that we may not be
prepared to assert categorically  by arguing under a supposition in
order to establish a relation between the two claims. It does not matter
for the soundness or safety of PE which disjunct figures as the goal of
this hypothetical argument and which is barred in its supposition.

Derivations, especially those that have a disjunction as a goal as well as
a premise can often be developed in a number of different ways. Some of
these can be significantly longer than others but the choice between
forms of PE will usually have only a limited impact on the length.

Conjunction and disjunction are opposite in the sense of being dual .
One manifestation of this relation is in De Morgan’s laws , which tell
how to restate the denial of a conjunction or disjunction as an assertion
of the other form of compound. Another manifestation is a pattern in
laws of relative exhaustiveness which allows us to interchange
conjunctions and disjunctions if at the same time we interchange ⊤ and
⊥ and also premises and alternatives.
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4.2.x. Exercises

1. Use derivations to establish each of the claims of entailment and
equivalence shown below. (Remember that claims of equivalence
require derivations in both directions.)

a. A ∧ B ⇒ A ∨ B

b. A ∧ B ⇒ B ∨ C

c. A ∨ B, ¬ A ⇒ B

d. A ∨ (A ∧ B) ⇒ A

e. A ∨ B, ¬ (A ∧ C), ¬ (B ∧ C) ⇒ ¬ C

f. A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ C

g. A ∨ B, C ⇒ (A ∧ C) ∨ (B ∧ C)

h. A ∨ B, ¬ A ∨ C ⇒ B ∨ C

i. A ⇔ (A ∧ B) ∨ (A ∧ ¬ B)

2. Use derivations to establish each of the claims of equivalence
below.

a. A ∨ A ⇔ A

b. A ∨ B ⇔ B ∨ A

c. A ∨ (B ∨ C) ⇔ (A ∨ B) ∨ C

d. A ∨ (B ∧ ¬ B) ⇔ A

e. ¬ (A ∨ B) ⇔ ¬ A ∧ ¬ B

f. ¬ (A ∧ B) ⇔ ¬ A ∨ ¬ B

3. Use derivations to check each of the claims below; if a derivation
indicates that a claim fails, present a counterexample that divides
an open gap.

a. A ∨ B, A ⇒ ¬ B

b. A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ C

c. ¬ (A ∨ B) ⇔ ¬ A ∨ ¬ B
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4.2.xa. Exercise answers

1. a. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (3)

│
││¬ A
│├─
││●
│├─

3 QED││B 2
├─

2 PE │A ∨ B

b. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (3)

│
││¬ C
│├─
││●
│├─

3 QED││B 2
├─

2 PE │B ∨ C

c. │A ∨ B 1
│¬ A (3)
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 Nc │││⊥ 2
│├─

2 IP ││B 1
│
││B (4)
│├─
││●
│├─

4 QED││B 1
├─

1 PC │B



d. │A ∨ (A ∧ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A ∧ B 3
│├─

3 Ext ││A (4)
3 Ext ││B

││●
│├─

4 QED││A 1
├─

1 PC │A

e. │A ∨ B 2
│¬ (A ∧ C) 3
│¬ (B ∧ C) 7
├─
││C (6),(10)
│├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
│││││●
││││├─

6 QED │││││C 4
│││├─

4 Cnj ││││A ∧ C 3
││├─

3 CR │││⊥ 2
││
│││B (9)
││├─
│││││●
││││├─

9 QED │││││B 8
││││
│││││●
││││├─

10 QED│││││C 8
│││├─

8 Cnj ││││B ∧ C 7
││├─

7 CR │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA │¬ C

f. │A ∧ (B ∨ C) 1
├─

1 Ext │A (5)
1 Ext │B ∨ C 2

│
││B (6)
│├─
│││¬ C
││├─
││││●
│││├─

5 QED││││A 4
│││
││││●
│││├─

6 QED││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 PE ││(A ∧ B) ∨ C 2
│
││C (8)
│├─
│││¬ (A ∧ B)
││├─
│││●
││├─

8 QED│││C 7
│├─

7 PE ││(A ∧ B) ∨ C 2
├─

2 PC │(A ∧ B) ∨ C

g. │A ∨ B 1
│C (5),(9)
├─
││A (4)
│├─
│││¬ (B ∧ C)
││├─
││││●
│││├─

4 QED││││A 3
│││
││││●
│││├─

5 QED││││C 3
││├─

3 Cnj │││A ∧ C 2
│├─

2 PE ││(A ∧ C) ∨ (B ∧ C) 1
│
││B (8)
│├─
│││¬ (A ∧ C)
││├─
││││●
│││├─

8 QED││││B 7
│││
││││●
│││├─

9 QED││││C 7
││├─

7 Cnj │││B ∧ C 6
│├─

6 PE ││(A ∧ C) ∨ (B ∧ C) 1
├─

1 PC │(A ∧ C) ∨ (B ∧ C)



h. │A ∨ B 1
│¬ A ∨ C 2
├─
││A (5)
│├─
│││¬ A (5)
││├─
││││¬ B
│││├─
│││││¬ C
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││C 3
││├─

3 PE │││B ∨ C 2
││
│││C (7)
││├─
││││¬ B
│││├─
││││●
│││├─

7 QED││││C 6
││├─

6 PE │││B ∨ C 2
│├─

2 PC ││B ∨ C 1
│
││B (9)
│├─
│││¬ C
││├─
│││●
││├─

9 QED│││B 8
│├─

8 PE ││B ∨ C 1
├─

1 PC │B ∨ C

i. │A (3),(7)
├─
││¬ (A ∧ B) 5
│├─
│││●
││├─

3 QED│││A 2
││
││││B (8)
│││├─
││││││●
│││││├─

7 QED││││││A 6
│││││
││││││●
│││││├─

8 QED││││││B 6
││││├─

6 Cnj │││││A ∧ B 5
│││├─

5 CR ││││⊥ 4
││├─

4 RAA│││¬ B 2
│├─

2 Cnj ││A ∧ ¬ B 1
├─

1 PE │(A ∧ B) ∨ (A ∧ ¬ B)

 │(A ∧ B) ∨ (A ∧ ¬ B) 1
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B

││●
│├─

3 QED││A 1
│
││A ∧ ¬ B 4
│├─

4 Ext ││A (5)
4 Ext ││¬ B

││●
│├─

5 QED││A 1
├─

1 PC │A

2. a. │A ∨ A 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A (3)
│├─
││●
│├─

3 QED││A 1
├─

1 PC │A

 │A (2)
├─
││¬ A
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ A

b. │A ∨ B 1
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 QED│││A 2
│├─

2 PE ││B ∨ A 1
│
││B
│├─
│││¬ A (5)
││├─
│││●
││├─

5 QED│││B 4
│├─

4 PE ││B ∨ A 1
├─

1 PC │B ∨ A

 │B ∨ A 2
├─
││¬ A (5)
│├─
│││B (3)
││├─
│││●
││├─

3 QED│││B 2
││
│││A (5)
││├─
││││¬ B
│││├─
││││●
│││├─

5 Nc ││││⊥ 4
││├─

4 IP │││B 2
│├─

2 PC ││B 1
├─

1 PE │A ∨ B



 c. │(A ∨ B) ∨ C 3
├─
││¬ A (6)
│├─
│││¬ B (8)
││├─
││││A ∨ B 4
│││├─
│││││A (6)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

6 Nc ││││││⊥ 5
││││├─

5 IP │││││C 4
││││
│││││B (8)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

8 Nc ││││││⊥ 7
││││├─

7 IP │││││C 4
│││├─

4 PC ││││C 3
│││
││││C (9)
│││├─
││││●
│││├─

9 QED││││C 3
││├─

3 PC │││C 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

This is the second of the two
derivations needed; the first
appears in 4.2.3 . In that one,
disjunctive resources are exploited
before disjunctive goals are planned
for while the derivation at the left
here illustrates the opposite
approach.

 d. │A ∨ (B ∧ ¬ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││B ∧ ¬ B 3
│├─

3 Ext ││B (5)
3 Ext ││¬ B (5)

││
│││¬ A
││├─
│││●
││├─

5 Nc │││⊥ 4
│├─

4 IP ││A 1
├─

1 PC │A

 │A (2)
├─
││¬ (B ∧ ¬ B)
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ (B ∧ ¬ B)

 e. │¬ (A ∨ B) 3,7
├─
│││A (5)
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ A 1
│
│││B (9)
││├─
│││││¬ A
││││├─
│││││●
││││├─

9 QED│││││B 8
│││├─

8 PE ││││A ∨ B 7
││├─

7 CR │││⊥ 6
│├─

6 RAA││¬ B 1
├─

1 Cnj │¬ A ∧ ¬ B

 │¬ A ∧ ¬ B 1
├─

1 Ext │¬ A (4)
1 Ext │¬ B (5)

│
││A ∨ B 3
│├─
│││A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││B (5)
││├─
│││●
││├─
│││⊥ 3
│├─

3 PC ││⊥ 2
├─

2 RAA│¬ (A ∨ B)

 f. │¬ (A ∧ B) 3
├─
││A (5)
│├─
│││B (6)
││├─
│││││●
││││├─

5 QED│││││A 4
││││
│││││●
││││├─

6 QED│││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

 │¬ A ∨ ¬ B 3
├─
││A ∧ B 2
│├─

2 Ext ││A (4)
2 Ext ││B (5)

││
│││¬ A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││¬ B (5)
││├─
│││●
││├─

5 Nc │││⊥ 3
│├─

3 PC ││⊥ 1
├─

1 RAA│¬ (A ∧ B)



3. a. │A ∨ B 2
│A
├─
││B
│├─
│││A
││├─
│││○ A, B ⇏ ⊥
││├─
│││⊥ 2
││
│││B
││├─
│││○ A, B ⇏ ⊥
││├─
│││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ B

A B A ∨ B , A / ¬ B
T T Ⓣ Ⓣ Ⓕ

 b. │A ∨ (B ∧ C) 3,8
├─
│││¬ A (5)
││├─
││││A (5)
│││├─
│││││¬ B
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││B 3
│││
││││B ∧ C
│││├─

6 Ext ││││B 7
6 Ext ││││C

││││●
│││├─

7 QED ││││B 3
││├─

3 PC │││B 2
│├─

2 PE ││A ∨ B 1
│
│││A
││├─
││││¬ C
│││├─
││││○ A, ¬ C ⇏ ⊥
│││├─
││││⊥ 9
││├─

9 IP │││C 8
││
│││B ∧ C 10
││├─

10 Ext │││B
10 Ext │││C 11

│││●
││├─

11 QED│││C 8
│├─

8 PC ││C 1
├─

1 Cnj │(A ∨ B) ∧ C

 Since entailment fails in one
direction, equivalence must fail,
so a second derivation for
entailment in the other direction
need not be pursued; but that
entailment does hold, as is
shown below.

│(A ∨ B) ∧ C 1
├─

1 Ext │A ∨ B 2
1 Ext │C (8)

│
││A (4)
│├─
│││¬ (B ∧ C)
││├─
│││●
││├─

4 QED│││A 3
│├─

3 PE ││A ∨ (B ∧ C) 2
│
││B (7)
│├─
│││¬ A
││├─
││││●
│││├─

7 QED││││B 6
│││
││││●
│││├─

8 QED││││C 6
││├─

6 Cnj │││B ∧ C 5
│├─

5 PE ││A ∨ (B ∧ C) 2
├─

2 PC │A ∨ (B ∧ C)

Each of the following divides the
one open gap:
A B C A ∨ (B ∧ C) / (A ∨ B) ∧ C
T T F Ⓣ F T Ⓕ
T F F Ⓣ F T Ⓕ

 c. │¬ (A ∨ B) 3
├─
││A (5)
│├─
│││B
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

The following divide the first
and second open gap,
respectively:
A B ¬ A ∨ ¬ B / ¬ (A ∨ B)
F T T ⓉF Ⓕ T
T F F ⓉT Ⓕ T

 │¬ A ∨ ¬ B 2
├─
││A ∨ B 3,5
│├─
│││¬ A (4)
││├─
││││A (4)
│││├─
││││●
│││├─

4 Nc ││││⊥ 3
│││
││││B
│││├─
││││○ ¬ A, B ⇏ ⊥
│││├─
││││⊥ 3
││├─

3 PC │││⊥ 2
││
│││¬ B (6)
││├─
││││A
│││├─
││││○ A, ¬ B ⇏ ⊥
│││├─
││││⊥ 5
│││
││││B (6)
│││├─
││││●
│││├─

6 Nc ││││⊥ 5
││├─

5 PC │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ (A ∨ B)

Glen Helman  01 Aug 2004


