
3.2.2. Drawing negative conclusions

The law for negation as a conclusion

Γ ⇒ ¬ φ if and only if Γ, φ ⇒ ⊥

describes the conditions under which an entailment of the form Γ ⇒ ¬ φ
holds. An example may help in thinking about this law. The argument

Ann and Bill were not both home without the car being in the
driveway
Ann was home but the car was not in the driveway
Bill was not home

is valid and seeing that it is valid comes to the same thing as seeing that
Bill could not have been home if the premises are true. But to see this is
to see that the claim Bill was home is excluded by the premises of the
argument. The negative conclusion of this argument is valid because the
conclusion denies something that is excluded by the premises.

And the law for negation as a conclusion says that this holds in general
since a reductio entailment Γ, φ ⇒ ⊥ is the way we capture exclusion in
terms of entailment. That is, Γ excludes φ if adding φ to Γ would enable
us to reach an absurd conclusion. In these terms, we can validly
conclude a negation ¬ φ when we can reduce to absurdity the result of
adding φ to the premises Γ.

Although the entailment Γ, φ ⇒ ⊥ shows the inconsistency of the full set
containing the members of Γ together with φ, we focus attention on φ
when we say it is excluded by, or is inconsistent with, Γ. Similarly, we
can say that the argument Γ, φ / ⊥ reduces φ to absurdity given Γ. So we
can restate the law for negation as a conclusion in another way: we can
validly conclude a negation ¬ φ from premises Γ when we can reduce φ
to absurdity given the premises Γ.

To implement this idea as a way of developing a gap whose goal is ¬ φ,
we must add φ as a further resource in the child gap. Unlike resources
added through Ext, this added resource will generally go beyond
information contained in the premises. It is a genuine addition to the
claims made by the premises, amounting to a further assumption for the
purposes of the argument. Such further assumptions are often called
suppositions and the verb suppose is used to introduce them when
putting this sort of deductive reasoning into words. Suppositions can
have a variety of roles in deductive reasoning. In the second gap
introduced by the rules Lemma and LFR of §2.4, the lemma is

introduced as a supposition. In those rules it represents a resource that
we have on loan, a loan that is paid if we are able to close the first gap.
When we suppose φ in order to prove ¬ φ, we make the supposition in
order to refute it by reducing it to absurdity. That is, we make the
supposition in order to consider a possibility, and we go on to rule out
the possibility on the basis of the assumptions to which the supposition
was added. We will encounter still other uses of suppositions in later
chapters.

The rule that implements this idea in derivations will be called
Reductio Ad Absurdum or RAA. It leads us to develop a gap by
adding a supposition and, at the same time, changing our goal to ⊥. The
part of the derivation these changes affect is marked by a scope line, and
the added resource is marked off at the top by a horizontal line. That is,
the rule by which we plan for negative goals will take the form shown in
Figure 3.2.2-1.

│...
│
││...
││
││
││
││
││
││
│├─
││¬ φ
│...

│...
│
││...
││
│││φ
││├─
│││
││├─
│││⊥ n
│├─

n RAA││¬ φ
│...

Fig. 3.2.2-1. Developing a derivation by planning for a negation at stage n.

If we state this rule for tree-form proofs, it takes the following form
(which you should compare to the analogous diagram for the rule Lem
of §2.4.1):

 φ
 ⊥

RAA
 ¬ φ

This shows a pattern of argument in which we conclude ¬ φ from the
premise ⊥. But that description would apply also to the rule EFQ, so it
does not capture all that is going on here. The conclusion ¬ φ is, in
general, weaker than ⊥. And the rule for negation as a conclusion tells
us that the particular way it is weaker licenses us to drop φ from our
assumption. The fact that ⊥ falls within the scope of a supposition φ in
the tree-form argument, shows that it is itself the conclusion of a
reductio argument. The rule RAA enables us to transform that argument

by both weakening its conclusion and ending the scope of the
assumption φ.

Once we have begun a reductio argument, we have ⊥ as our goal and we
must look for ways of reaching it. The only way we have in our rules so
far is QED, but that requires that we have ⊥ among our resources. While
it is, of course, possible that our new supposition is ⊥ or that ⊥ was
already among our resources, we would not expect this to happen in
general. Usually, we will need to make use of both the supposition and
the pre-existing resources and make use of some negative claims among
them. Our full discussion of the use of negative resources will come only
in §3.3 , but the core principle for using such resources is one we can
consider now.

One of the traditional laws of logic is the law of non-contradiction.
Even though this is sometimes referred to as the “law of contradiction”
and its name is more consistent than the way it is stated, the basic idea
is always the same: a statement and its denial cannot both be true. We
know it as the principle that ¬ φ and φ are mutually exclusive—or, in the
form most relevant at the moment, that ¬ φ, φ ⇒ ⊥. This idea lies behind
a pattern of argument that we will call Non-contradiction or Nc:

 ¬ φ φ
NC

 ⊥

This pattern of argument will appear in derivations as a way of
completing a reductio argument:

│...
│¬ φ [available]
│...
│φ [available]
│...
│
││...
││
│├─
││⊥
│...

│...
│¬ φ (n)
│...
│φ (n)
│...
│
││...
││●
│├─

n Nc││⊥
│...

Fig. 3.2.2-2. Closing the gap of a reductio argument one of whose resources
negates another.

Notice that, as with other rules that close gaps, the resources required to
apply this need only be available and they are marked with
parenthesized stage numbers. The latter point is, of course, moot since
the gap closes and, in a way, the first point is moot also. Once we have
the further rules of §3.3 , we will need this rule only when φ is an

unanalyzed component (though it will be usable and useful in other
cases, too). And we will never have rules for exploiting unanalyzed
components or their negations so such resources will be active whenever
they are available.

Glen Helman 01 Aug 2004

