
2.2.1. Proofs as trees

Our study of entailments involving conjunction will rest on the principles
discussed in 2.1.1 . These are shown below in symbolic form on the left and in
English on the right:

φ ∧ ψ ⇒ φ 
φ ∧ ψ ⇒ ψ 
φ, ψ ⇒ φ ∧ ψ

both φ and ψ ⇒ φ 
both φ and ψ ⇒ ψ 
φ, ψ ⇒ both φ and ψ.

We will refer to the first two of these patterns as extraction (left and right
extraction when we wish to distinguish them) and to the third simply as
conjunction. To establish particular cases of entailment, we will want to link
together special cases of these general patterns and, eventually, of other
patterns, too.

One notation for doing that employs something like the two-dimensional form
we have used for arguments, with the conclusion below the premises and
marked off from them by a horizontal line. In order to make the premises of a
multi-premised argument available to serve as conclusions of further argument,
we will spread them out horizontally. In this style of notation, the basic patterns
for conjunction take the following forms (where abbreviations of their names
are used as labels):

 φ ∧ ψ
Ext

 φ

 φ ∧ ψ
Ext

 ψ

 φ ψ
Cnj

 φ ∧ ψ

Arguments exhibiting these patterns can be linked by treating the premises of
one argument as conclusions of other arguments. For example, the following
shows that (A ∧ B) ∧ C is a valid conclusion from the two premises A and B ∧ C:

   B ∧ C   
  Ext   
 A  B  B ∧ C

Cnj Ext
 A ∧ B  C

Cnj
 (A ∧ B) ∧ C

The ability to put the principles for conjunction together in this way rests on the
general laws of entailment discussed in 1.4.2 . The law for premises enables us
to begin; it shows that the premises A and B ∧ C entail the tips of the branches
of this tree-like proof. Repeated uses of the chain law then enable to add
conclusions drawn using the principles for conjunction, and we work our way
down the tree showing that the original set of premises entails each
intermediate conclusion and, eventually, (A ∧ B) ∧ C. For example, just before
the end, we know that our original premises entail each of the premises of the
final conclusion--i.e., that A, B ∧ C ⇒ A ∧ B and A, B ∧ C ⇒ C. The chain law
then enables us to combine these entailments with the fact that



A ∧ B, C ⇒ (A ∧ B) ∧ C (a case of Conjunction) to show that A, B ∧ C ⇒ (A ∧ B)
∧ C.

It is not hard to see that this process will work for any valid argument that
depends on conjunction alone. By working backward from its conclusion using
Cnj arguments we can grow a tree which will eventually have the ultimate
components of the conclusion at the tips of its branches. Call this an analysis
tree. By applying Ext arguments repeatedly to our premises, we will eventually
have a series of chains, each beginning with the premises and ending with one
of the ultimate components of a premise, with all such components represented
among the chains. Call these exploitation chains. Applying this approach to
the example above, we would have three exploitation chains in addition to the
analysis tree.

Analysis tree grown up from the
conclusion

 Exploitation chains grown down from
the premises

 A  B  
Cnj

 A ∧ B  C
Cnj

 (A ∧ B) ∧ C

 
A  B ∧ C  B ∧ C
 Ext Ext

 B  C

We can then construct the proof shown above by pasting the end of each
analysis chain over the tip of one of the branches of the analysis tree. In this
case, the chains match up one to one with the tips of branches; but, in other
cases, we might need to use more than one copy of a given chain, and we might
not need to use some chains at all. All that is required to complete a proof is
that the tip of each branch be matched by some chain, and that could fail to
happen only if the conclusion contained an ultimate component that was not an
ultimate component of any of the premises. But an argument whose conclusion
contained an ultimate component not appearing in the premises would not be
valid because, by making this component false and all others true, we would
make the conclusion false while making the premises true. And, if the ultimate
components of the premises and conclusion form a set that is logically
independent (in the sense discussed in 1.4.6 ), this sort of assignment of truth
values would correspond to some possible world. So if a relation of entailment
holds solely in virtue of the way sentences are formed using conjunction (and
not in virtue of logical relations among their ultimate components), it can be
shown to hold by the sort of proofs we have been considering.

The way we have shown this will not work when we consider proofs involving
other connectives; and, in 2.3 , we will look at a different way of arguing in the
case of conjunction that is better suited to other logical forms. We can make one
step in that direction now by looking at some basic principles for entailment
that describe the conditions under which any arguments involving conjunction
are valid.

Γ, φ ∧ ψ ⇒ χ if and only if Γ, φ, ψ ⇒ χ (conjunction as a premise)
Γ ⇒ φ ∧ ψ if and only if both Γ ⇒ φ and Γ ⇒ ψ (conjunction as a
conclusion)



These principles can be seen to hold by the comparing the sort of possible
worlds each side of the if and only if rules out. In the first principles, each side
rules out the possibility of a world in which χ is false while φ, ψ, and the
members of Γ are all true; that means that these two entailments offer
equivalent guarantees, so each holds if and only if the other does. In the second
principle, the sort of worlds ruled out by guarantee on the left are the worlds in
which the members of Γ are all true but φ or ψ is false, and the same worlds are
ruled out when we have both the guarantees on the right. The upshot is that
these two principles suffice, together with the law of premises, to establish any
cases of validity that depend on conjunction alone.

The if part of these principles reflects the validity of arguments of the forms Ext
and Cnj (together with the chain law). The only if part of the first tells us that
whatever a conjunction contributes as a premise of a valid argument is already
contributed by the conclusions we could derive by Ext; that is, our use of a
conjunction need only be by way of Ext. The only if part of the second tells us
that, if a conjunction is a valid conclusion, then the premises needed to reach it
by Cnj are themselves valid conclusions. When conjunction is the only
connective employed in our analysis of sentences, applying these two principles
repeatedly will eventually bring us back to arguments whose premises and
conclusions are all unanalyzed components. If these components are logically
independent, an argument whose premises and conclusion are drawn from them
is valid when and only when its conclusion is among its premises; thus, if it is
valid, its validity follows by the law of premises.

The recipe for constructing tree-form proofs that we looked at earlier had us
put together an analysis tree and exploitation chains by pasting the ends of the
latter onto the tips of the former’s branches. It will help in comparing the tree-
form proofs to those we will go on to consider if we have a pattern of argument
to use as the glue, so we will add a pattern reflecting the reflexivity of
implication:

 φ
QED

 φ

The name for this abbreviates the Latin phrase quod erat demonstrandum,
which might be translated as what was to be proven. This Latin phrase is
traditionally used when a planned conclusion is reached. The use of the pattern
QED is illustrated in the following example, which establishes that (A ∧ B) ∧ C,
D ⇒ C ∧ (A ∧ D).



Analysis tree  Exploitation chains

   A  D
  Cnj
 C  A ∧ D

Cnj
 C ∧ (A ∧ D)

 
 (A ∧ B) ∧ C  (A ∧ B) ∧ C  (A ∧ B) ∧ C  D

Ext Ext Ext   
 A ∧ B  A ∧ B  C   

Ext Ext     
 A  B     

Tree-form proof

(A ∧ B) ∧ C  
Ext   

A ∧ B  
Ext   

(A ∧ B) ∧ C A D
Ext QED QED

C A D
QED Cnj

C A ∧ D
Cnj

C ∧ (A ∧ D)

Notice that this proof uses only two of the three chains of extractions that begin
with the first premise.

A couple of the principles for ⊤ and ⊥—those for ⊤ as a conclusion  and ⊥ as
a premise —assert the validity of arguments and can be used to build tree-form
proofs:

 
ENV

 ⊤

 ⊥
EFQ

 φ

The label for the second, EFQ, abbreviates the Latin ex falso quodlibet (which
might be translated as from the false, whatever), a traditional description the
law for ⊥ as a premise, and the label for the first, ENV, abbreviates ex nihilo
verum (from nothing, the true), which gives a corresponding description of the
law for ⊤ as a conclusion. The argument ENV has no premises and serves to
close off a branch of an analysis tree, making it one that need not have an
exploitation chain connected to it—as in the following proof, which shows that
A, B ⇒ (B ∧ ⊤) ∧ A:

 B   
QED ENV

 B  ⊤  A
Cnj QED

 B ∧ ⊤  A
Cnj

 (B ∧ ⊤) ∧ A

The pattern EFQ enables us to connect an exploitation chain ending with ⊥ to
the tip of any branch. The following example uses it to show that A ∧ (⊥ ∧ B) ⇒
C ∧ D:



Ext Ext
 ⊥ ∧ B  ⊥ ∧ B

Ext Ext
 ⊥  ⊥

EFQ EFQ
 C  D

Cnj
 C ∧ D

The premise A ∧ (⊥ ∧ B) is the starting point for exploitation chains ending in A
and B, too, but even if these sentences had appeared at the tips of branches of
an analysis tree, the exploitation chain ending with ⊥ would have been enough
to complete the proof.

The two other laws for ⊤ and ⊥ have a different significance. The law for ⊤ as
a premise  does not correspond to any pattern of valid argument. It merely tells
us that an exploitation chain ending with ⊤ contributes nothing to a proof and
may be ignored. Of course, such a chain might be connected to a branch of an
analysis tree that has ⊤ at its tip; but such a branch could be closed off by ENV
instead. The law for ⊥ as an alternative  does not figure as a principle
governing the construction of proofs at all. Because its two sides have different
numbers of alternatives, it does not provide a way of restating claims of
entailment: if one side has a single alternative and thus counts as claim of
entailment, the other will either have no alternatives or more than one.
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