1.4.xa. Exercise answers

- 1. a. ϕ and ψ together entail χ
 - **b.** $\psi \Rightarrow \phi$
 - \mathbf{c} . ϕ is equivalent to itself
 - **d.** ψ is absurd or: ψ taken by itself forms an inconsistent set
 - e. Γ, φ ⇒
 or: Γ, φ ⇒ ⊥
 (Strictly speaking, Γ, φ ⇒ ⊥ expresses entailment rather than inconsistency, but it is true if and only if φ is inconsistent with Γ.)
 - **f.** $\Gamma, \psi \Rightarrow \phi$
- **2. a.** We have supposed that $\Gamma \Rightarrow \phi$. That is, we have supposed that ϕ is **T** in any possible world in which all members of Γ are **T**. But w is a world in which all members of Γ are **T**, so ϕ , too, must be **T** in w.
 - **b.** We now know that ϕ and all members of Γ are **T** in w. But we supposed that Γ , $\phi \Rightarrow \psi$ and we now know that all the premises of this entailment are **T** in w, so ψ also must be **T** also.
 - **c.** For w to be a counterexample to $\Gamma \Rightarrow \psi$, it must make give ψ the value **F** and give all the members of Γ the value **T**.
 - **d.** A counterexample to $\Gamma \Rightarrow \phi$ must give ϕ the value **F** and give all the members of Γ the value **T**. A counterexample to Γ , $\phi \Rightarrow \psi$ must give ψ the value **F** while giving ϕ and all the members of Γ the value **T**.
 - **e.** We know that w gives ψ the value \mathbf{F} and gives all the members of Γ the value \mathbf{T} . But it also must make ϕ either \mathbf{T} or \mathbf{F} . If it does the former, it is a counterexample to Γ , $\phi \Rightarrow \psi$; and if it does the latter, it is a counterexample to $\Gamma \Rightarrow \phi$.

Glen Helman 05 Aug 2004