1.4.x. Exercise questions - 1. Restate each of the following claims about logical properties and relations, putting into symbolic notation those stated in English and into English those stated in symbolic notation: - **a.** $\phi, \psi \Rightarrow \chi$ - **b.** ϕ is entailed by ψ - $\mathbf{c}. \quad \phi \Leftrightarrow \phi$ - **d.** $\psi \Rightarrow$ - **e.** ϕ is inconsistent with Γ - **f.** ϕ is entailed by the members of Γ together with ψ - 2. The following steps lead you to construct a proof of the law for lemmas ``` if \Gamma, \phi \Rightarrow \psi and \Gamma \Rightarrow \phi, then \Gamma \Rightarrow \psi ``` Begin by supposing that Γ , $\phi \Rightarrow \psi$ and $\Gamma \Rightarrow \phi$ are both true. We want to show that, under this supposition, $\Gamma \Rightarrow \psi$ is also true. To do that, we consider any possible world w in which all members of Γ are true and try to show that ψ is true in w. - **a.** Our supposition that Γ , $\phi \Rightarrow \psi$ and $\Gamma \Rightarrow \phi$ are both true combined with what we know about w enables us to conclude that ϕ is true. Why? - **b.** Adding the information that ϕ is true in Γ to what we already knew, we can conclude that ψ is true. Why? So, knowing about w only that all members of Γ were true, we are able to conclude that ψ is true. And that shows us that ψ is true in every world in which all members of Γ are true, which means that $\Gamma \Rightarrow \psi$. Another approach to proving the law is to show that $\Gamma \Rightarrow \psi$ fails only if at least one of Γ , $\phi \Rightarrow \psi$ and $\Gamma \Rightarrow \phi$ fails. The following three steps show this: - **c.** Suppose that *w* is a counterexample to $\Gamma \Rightarrow \psi$. What truth values do ψ and the members of Γ have in *w*? - **d.** What truth values are needed to have a counterexample to $\Gamma \Rightarrow \phi$? To have a counterexample to $\Gamma, \phi \Rightarrow \psi$? - **e.** The world w from \mathbf{c} will be a counterexample to either Γ , $\phi \Rightarrow \psi$ or $\Gamma \Rightarrow \phi$. Why?