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ABSTRACT. A planimeter is a mechanical instrument used to determine the area of a region
in the plane. As the boundary of the region is traced, a wheel attached to the instrument
partially rolls and partially slides, recording a component of its motion on the plane. The
area of the region is a simple function of the net roll of the wheel. We show how the analogue
of this instrument works on the sphere and the hyperbolic plane, and then use the results to
give a simple proof of one of the Bonnesen isoperimetric inequalities for these surfaces. The
rolling of the wheel can be interpreted as parallel translation for a connection in a certain
bundle over the surface. The isoperimetric inequality can then be viewed as a statement
about the holonomy of this connection.

THE CASE IN R?2

Before doing the general case, we give an informal description of how a planimeter works
in the plane, and how its action is related to the isoperimetric inequality. For more details
and a brief history of planimeters, see [2].

Let p and ¢ be distinct points in R?, and consider the segment joining them. We will call
p the left endpoint of the segment and g the right endpoint. This orientation determines
a “forward” side of the segment, namely, the direction you face when you stand on the

segment with p to your left and g to your right. Let N be a forward-pointing unit vector

along the segment.




If the segment moves slightly, an infinitesimal oriented area is swept out, given by
dA ={N -5‘!%'—‘1—‘1, where £ is the length of the segment (which can be variable), and dp and
dq are the infinitesimal displacements of the endpoints. If the endpoints of the moving
segment trace out curves, the expression for dA can be integrated, yielding the total
oriented area swept out. In particular, if the endpoints trace out closed curves, it is easy
to show that the oriented area swept out is Ag — Ay, where Ag and Ay, are the oriented
areas enclosed by the right and left endpoints, respectively.

If a wheel is attached to the segment at p with its axis parallel to the segment, it will roll
when the segment moves forward but slip when the segment moves sideways. If the segment
moves infinitesimally, the “roll” of the wheel will be do; = N-dp. Similarly, dop = N-dg
is the infinitesimal roll of a wheel attached to the right endpoint of the segment, and we
have dA = %(dUL + dog).

The expression for dA can be written in other ways,

I 2
(1) dA = tdoy = fldop+-df = (ldop—df,

where doy; = 3 (doy, + doy,) is the infinitesimal roll of a wheel attached to the midpoint of
the segment and df is the infinitesimal rotation of the segment.

The moving segment becomes a planimeter when we fix its length £ and use it to measure
the area of a desired region Q. This is accomplished by having the right endpoint (the
tracer point), move around 9 in the positive direction (so Agx = Agq) while the left
endpoint traces the boundary of some region of known area. In typical applications, the
path followed by the left endpoint doesn’t enclose any area, so Ar = 0 (this will always
be the case in this paper). The polar and linear planimeters (invented by Jacob Amsler
in 1854) are examples of this in which the left endpoint p moves along a circle (not going
all the way around) and a line, respectively, but it is important to note that p can move
along any curve that doesn’t enclose any area.




When the planimeter is used to measure the area of 2, it mechanically integrates (1).
Since it returns to its original position, df integrates to 27n, where n is the number of
rotations made by the planimeter. Thus we have

(2) Ao = 5, = L5, +nnl> = L55—nnl?

where 6,, = [ do,,, etc. We call 6,, the “total roll” of the wheel. When the planimeter is
used in its usual way n is 0. In this case Aq = £, = £6; = £5p, and so the area can be
read off of a scale attached to the wheel that incorporates the constant of proportionality
£. It’s of interest to note that the three wheels roll the same amount, and it’s not hard to
show that a wheel located at any point along the segment would also.

For isoperimetric inequalities, the interesting case is when the region €2 is measured in
such a way that the planimeter arm makes a counterclockwise rotation, that is, n = 1.
This can be done only if the length £ of the planimeter is related to the region in some way.
Two situations of interest in this paper are when /£ is a half~-width of (2 or the circumradius
of Q (how this is accomplished will be explained in a moment). When  can be measured
in this way, the third expression for A = Ag in (2) can be written as 6p¢ = A+ nf2. Note
that for each position of the planimeter, the infinitesimal roll doy, of the wheel at the right
endpoint (which traces 0(2) is the component of the infinitesimal length ds of 02 that is
perpendicular to the planimeter. Thus L = [ds > [ dop = G5, where L is the length of
0N, with equality if and only if the planimeter arm stays perpendicular to 9Q). Thus we
have L{ > A + wf2. This inequality is algebraically equivalent to three inequalities that
give lower bounds on the isoperimetric defect [6, Lemma 1], two of which are listed on the
left below. The same algebraic manipulations applied to 6zf = A+ 7£? yield the equalities
listed on the right.

L? — 47 A > (L — 270)? 52 — 4w A = (65 — 2mL)?
1 1
L? —4nA > e—z(ﬂfz — A)? = e—z(mﬁ — A)?

When / is the circumradius R, the second inequality on the left becomes
[? — 47 A > (xR — A)?
mA 2> o3 (nR” — .
This is known as a Bonnesen inequality since the right hand side vanishes if and only if

Q is a disk of radius R. Thus the isoperimetric inequality L? > 47w A is an equality if and
only if the region is a disk. [6]




How to Measure 2. The motion of the planimeter is given by a pair of piecewise C?,
closed curves 7, and -y that give the motion of the left and right endpoints. The curve
Yr must be a positively oriented parameterization of 0f, the curve 4, must enclose zero
area, the distance between v, (f) and ~5(¢) must be constant, and, for the isoperimetric
inequality results, the vector v (t) — v (t) must rotate counterclockwise once. Evidently a
motion of the planimeter is a section of the circle bundle STR? — R2 along 0f2.
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The Half- Width Measurement. Let A be a line such that the maximum distance from A\
to points on 0} is attained by two points A and B on opposite sides of A\. Let £ be this
maximum distance. We will measure Q with a planimeter of length £. Let v5: [0,2] — R?
be a positively oriented, piecewise C* parameterization of 82 such that v, (0) = 1,(2) = A
and v5(1) = B. Then 4 (0) = 7,(2) and ~ (1) are determined—they are the unique
points on A closest to A and B, respectively. Let T be a unit vector parallel to A such
that the basis T',7,(0) — 7, (0) is positively oriented. For all other values of t € [0,2],
the circle Cy(vz(t)) of radius £ centered at () meets A in one or two points. Exactly
one point -, () in this intersection is picked out by the condition (yg(t) — . (t))-T < 0
for t € [0,1] and (y(¢) — v, (t))-T > 0 for t € [1,2], and the resulting curve -, is easily
seen to be C'. The resulting motion of the planimeter clearly makes one counterclockwise
rotation as it measures {2, and 7, encloses no area, as required. This construction, up to

reparameterization, is the same as the one used in a proof of the isoperimetric inequality
due to Schmidt [4, pg. 64].




The Circumradius Measurement. Let Dy be the disk with radius R such that 8Dp is
the circumscribing circle of 2. We will measure {2 with a planimeter of length R. Let
Yg: [0,1] — R? be a positively oriented, piecewise C' parameterization of 9 such that
Yz(0) = 1z(1) is on 0Dg. For 4(t) € ODg, define v, () to be C, the center of Dp.

Suppose that A and B are two “consecutive” points of 8 on the circumscribing circle,
that is, A = yz(a) and B = (b) are on 0Dg, for some a < b, and ,(t) ¢ 0Dp for
a < t < b. Note that the measure of the oriented angle ZACB must be less than or
equal to m (otherwise dDg would not be the circumscribing circle). Let Cﬁ be the ray
opposite the angle bisector of ZACB (if the measure of ZACB is , Cﬁ is taken so that
B - C, D — C form a positively oriented, orthogonal basis). For each g in the interior
of Dpg, the intersection of Cr(q) and 6'_1—)) consists of a unique point p, and the mapping
F': g — pis smooth. This mapping extends continuously to A and B, which are mapped to
C, since the angles ZDCA and ZBCD are obtuse or right. We then let v, (t) = F(y5(t))
for a <t < b. By construction, v, is piecewise C'. The net rotation of v (t) — v (£)
for a <t < b is the same as the measure of ZACB, and so the resulting motion of the
planimeter makes one counterclockwise rotation as it measures {2. The image of v, is a
finite or countably infinite union of line segments with common endpoint C, and so 7,
encloses no area.

CONSTANT CURVATURE SURFACES

The discussion above is made more precise by noting that the configuration space of
the planimeter moving in the plane is

R} = {(p,q) € R*xR?: |p—gq|| =4},

that the quantities dA, do;, doy,, dog, and df are 1-forms on this space, and that the
equations (1) express how these 1-forms are related. None of these forms is exact, and

their analogs on constant curvature surfaces will be denoted by o, o7, 0y, 0, and ©.

The Setting. To simplify topological considerations, we will consider only the sphere,
the Euclidean plane, and the hyperbolic plane. Let M be S2?, R%, or H? with constant

curvature k.

Let D, be a disk of radius £ in M. We will need various identities relating the area Ay
of Dy, and the length L, and geodesic curvature ¢; of 8D,;. These quantities are given in
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the following table.

k>0 k=0 k<O
AZ O 1—cosk! \/EE) ﬂ_ez %7 1 —coshk\/—_kf
(3) . .
LZ o sin \/\:}_EZ 2l r smh\/_gﬁ—lgé )

e, Vk cot(v/kL) 1/¢ v/—k coth(y/—k¥)

The most important identity is the isoperimetric equality for Dy: L? = 4w Ay —kA3. Other
identities will be introduced as needed. All are easily verified using (3).
The configuration space of the planimeter of length £ > 0 on M is

M, = {(p,q) € MxM | d(p,q) = £}.

When M is S? we require that £ be less than 7/v/k (half the circumference) to avoid
antipodal points. (On other constant curvature surfaces, one needs to work on orientable
subsets, and £ needs to be small enough so that no segment of length £ contains conjugate
points or points in the cut locus of either endpoint.) We will identify the pair (p,q) with
the oriented segment joining p to ¢, and will call p and ¢ the left and right endpoints of
the segment, respectively. A motion of the planimeter is a piecewise C! curve in Mj.

The tangent space T, q)M; consists of (X,Y) € T,M & T, M such that X and Y have
the same component in the direction of the segment. More precisely, let u, € T, M be the
unit vector such that Exp,(d(p, g)up) = g, and let uy be the parallel translate of u, along
the segment to ¢. Then

Tip,g)Me = {(X,Y) € T,M @ TyM | (X, up) = (Y, ug)}-

The 1-forms oy, 0,,, 0g, o, and ©. Before defining o7, 0,;, 0y, &, and © on M,, a
few comments are in order. The forms o7, op, and o0, are to measure the infinitesimal
roll of wheels attached to the endpoints and midpoint of the segment, and « is to measure
the infinitesimal oriented area swept out by the segment. The form © is to measure the
infinitesimal rotation of the segment as it moves, that is, the deviation of the segment from
parallel translation. When the curvature is non-zero, this measure of rotation depends on
the point on the segment where it is being measured, and so we will need to define ©; and
©p, for each endpoint.

When the segment moves in the direction of its length, that is, in the direction (up, uq) €
T(p,q)M¢, the wheels don’t roll, no area is swept out, and the segment doesn’t rotate. Thus
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(up, Uq) is in the kernel of all of these forms. Since dim M, = 3, these forms at (p, q) are
in a two-dimensional subspace of T(’;’ 2) M;,, and so are linear combinations of any two that
are independent.

Let N be the “forward-pointing” unit vector field along the segment, that is, N, is such
that up, Np, form an oriented, orthonormal basis of T, M; N; is the parallel translate of
N, along the segment, for every x on the segment. We will generally use the notation uy,
ug, Nz, and Ng for up, ug, Np, and N, to emphasize “left” and “right.” We can now
define o; and oy by

o (X,Y)=(X,Nr) and  0gx(X,Y) = (Y,Ng).

Fix p and let D, be the disk of radius £ centered at p. Since M is isotropic, the quantities
Ag/2m and L;/27 are the rates at which the area of D, and arc-length of 0D, are swept -
out as a radial segment of D, rotates about p in the positive direction.  Thus we should
have

(0,Y) = %@L(O,Y) and  0(0,Y) = %@L(O,Y).
In addition, as the segment rotates, the rate of rotation as measured at the right endpoint
should be given in terms of the curvature as

©x(0,Y) = cpog(0,Y).

Similarly,

a(X,O):——%f@R(X,O), UR(X,O):—%@)R(X,O), and ©,(X,0) = —c0;,(X,0).

These requirements force o, ©,, © 5 to be the following linear combinations of ¢; and
0g, which we take as definitions:

4) a= %(OL +0g), ©, = —ceop, + %UR’ and ©Op= ——2L—7;0L + co0p.
Note that when M is the Euclidean plane, ©; = ©p, since ¢, = 27/L; = 1/£ in this case.
In fact, ©; = O = df, where 0 satisfies ¢ — p = £(cosfe; +sinfez), and e;, e form the
standard basis of R?.

Finally, the 1-form o, should measure the infinitesimal roll of the wheel at the midpoint
of the segment, namely o,,(X,Y) = (N, Zp), where Ny is the forward-pointing normal
at the midpoint, and Zj, is the infinitesimal displacement of the midpoint corresponding
to the infinitesimal displacement (X,Y") of (p,q). Since the motion of the segment is a
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variation of a geodesic, the displacement field Z along the segment is the Jacobi field
with values X and Y at the endpoints. At the midpoint, the normal component of Z;; is
<NM,ZM> = %((NL,X) + <NR,Y>), and so

(4" Oy = %%2—(% + 0p).

The main property of the form « is that if I' = (v, 5) is a closed, piecewise C* curve in
My, then fr a = Agr— Ar, where Ay and Apg are, respectively, the oriented areas enclosed
by the curves ; and 7, in M.

This is true, and easier to prove, in a more general setting. Let Mgz be the space of
oriented segments in M, that is, the set of all (p,q) € M xM such that there is a unique
geodesic segment joining p to g. (This is M xM except when M is $2, in which case
antipodal pairs are omitted.) Thus M, C Msee. Given (p,q) € M, with p and ¢ distinct,
the vectors u;, up, N1, and Ng can be defined as above, which allow the definitions of
07, 0g, &, ©, and O to be extended to M., off the diagonal. In particular we have

A,
o(X,Y) = 52(0,(0,Y) - O5(X,0))
where r: Moz — R measures the length of the segment, i.e.,, 7(p, g) is the distance between
p and g. Note that o extends to the diagonal since Ay = 0. For o on M, we have the
following.

Lemma 1. Let I' = (v;,7;) be a closed, piecewise C' curve in Mseg. Then fra =
Ap — Ar, where Ar, and AR are, respectively, the oriented areas enclosed by v; and 7.

This is shown by proving that doo = dAgr — dAr.

How a Planimeter Works on M.

.- 7,
oS
N
S ‘.\';.}\‘_ :\

The equations (4, 4') along with the identities 74, = L2 /o and 2mAg + coLeAy = L3
yield the following formulas for a:




Lg Az i 1 AE
(5) - 5’/‘?0’1{ B ZW@R - CgGR B Lycy L

These are the analogs of (1). Note that we need to use caution when using the last formula
on the sphere, as ¢, = 0 when £ = 7k /2 (one-fourth of the circumference).

Let Q C M be simply connected with piecewise C! boundary. Suppose € can be
measured with a planimeter of length £, that is, there is a closed, piecewise C! curve
I' = (,,7,) in M, such that -, traverses 05 in the positive direction and -y, encloses no
area. As before, we have [ o= Ag and [, 0y, = &, etc. Integrating ©, and Oy, is a bit

more involved.

Lemma 2. [©, = 2mn and Jr©r = 2nn — kAq, where n is the number of rotations
made by the planimeter.

Remark. If M is R? or H?, the number of rotations made by the planimeter is unambiguous
—the rotation can be measured relative to some global frame on M. When M is the sphere,
we will assume that there is some point zg such that zq is not in the closure of €2 or on the
segment I'(t) for any ¢ (this will be the case, for example, if €2 is contained in a hemisphere
and ¢ < mv/k/2). Then the rotation can be measured relative to some frame on M \ {zo}.

Proof. Let S1M — M be the unit circle bundle of M, and note that the maps fr., fr: My —
S*M given by fr(p,q) = Np (= Nr) and fr(p,q) = N, (= Ng) are diffeomorphisms. Let
© be the rotation form on S'M, i.e., the reduction of the Riemannian connection form on
the frame bundle F(M) — M to the circle bundle. We have f;(0) = ©r and f5(0) = Or.
Thus flleL = [t,or©and [(Op= [, . .

Let 2 C M be simply connected with 02 traversed in the positive direction by the
closed, piecewise C* curve 7 : [0,1] — M. When M is the sphere, assume the closure of
§) is not all of M. Suppose I is a section of STM along 7. Since © is the connection form
on S'M, we have d® = —kdA. It follows that ff © = A0 — kAg, where Af is the net
rotation of the section I', that is, the angle from I'(0) to T'(1).

The result follows since 7, encloses {2 and v, doesn’t enclose any area. [l

In its typical use, the planimeter doesn’t make a full rotation (n = 0). The four
expressions in (5) then yield
Ly . _ ££ . Ly . ﬂ 1

Aqg = — Oy = 50, = %UR"I—?"_ICAQ = aaR.




The last two expressions agree by the identity Lsc; = 2 — kAy. We see that the roll of
each wheel is proportional to the area of €2, although unlike the flat case, the constant of
proportionality depends on the location of the wheel. In fact, it can be shown that if & is
the total roll of a wheel at some point on the planimeter, there is a constant C' depending
only on £ and the location of the wheel such that Aqg = C& (this still assumes n = 0).

On the sphere when £ = 7v/k/2 we have ¢; = 0 and the last formula in (5) reduces to
0=o0q— ﬁ@ 1» Which integrates to 6 = 0. Thus in this case the roll of the wheel at the
right endpoint is useless in determining the area of the region!

Some of this theory for a planimeter on a sphere was certainly known to Amsler. Henrici
[3, pg. 513] reports that Amsler published a paper [1] describing a planimeter to be used to
measure areas on a globe. I have not been able to obtain a copy of this, however de Morin
[5, pp. 75-80] works out a version of (5) for « in terms of the infinitesimal roll ¢ at an
arbitrary point on the planimeter and the infinitesimal rotation © of the planimeter at
the wheel. Unfortunately, he was not aware of Lemma 2, and took fr © to be zero (he
considered only the case of no net rotation). Thus his integrated formula is valid only when
the wheel is at the left endpoint of the segment. Interestingly, that’s where the wheel is in

the picture in his book, which is reproduced at the beginning of this subsection.

Isoperimetric Inequalities. The isoperimetric inequality for Q is L? > 4mA — kA2,
where A = Ag and L is the length of 9Q. [6] We obtained this by measuring Q with
a planimeter of length ¢ that allows the planimeter to make a counterclockwise rotation
(n = 1). In this case, the integrated form of the third expression for ¢ in (5) is A =
%&R + %kA — Ay, which can be written as 6L, = 2m(A + A;) — kAA,; (compare with
opl = A+ wf? for the flat case). As before we have L > Og, since oy records only the
component of the length of 0 in the direction of Ng. Thus LL, > 2n(A + Ay) — EAA,.
This inequality is algebraically equivalent to three inequalities that give lower bounds
on the isoperimetric defect [6, Lemma 6], listed on the left below. The same algebraic
manipulations applied to 6L, = 2m(A + Ag) — kAA, yield the equalities listed on the

right.
L? —4wA+ kA% > -1ty i 62 —4rA+ kA= {5 _Ley i
- Ay R R Ay
L? —4mA + kA% > (L — Ly)? 4+ k(A — Ay)? = (65 — Lg)? + k(A — Ap)?
1 amarka?s ()7 (4, 4y ~ (L7 4,y
m A\ 27 ¢ T\ 27 ¢

When / is the circumradius R, the last inequality on the left is a Bonnesen inequality as
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before, since the right hand side vanishes if and only if Q is a disk of radius R. Thus
L? > 4w A — kA? is an equality if and only if the region is a disk.

How to Measure 2. The constructions for the half-width and circumradius measure-
ments in the Euclidean case are valid in the Hyperbolic case with just minor changes. The
unit vector 1" parallel to A in the half-width construction is replaced by a unit vector field
T tangent to A. In both constructions the vector v,(¢) — v, () is replaced by the vector
uy (T'(t)). Then, for example, in the half-width construction +; (¢) is on A, so it makes sense
to compute (u (I'(t)), (v, (t))). The vectors A—C, B—C, and D —C in the circumradius
construction must be replaced by vectors in T¢c M tangent to the segments C A, CB, and
CD.

On the sphere one needs to be more careful. The half-width construction is valid (with
the same modifications as above) if the points A and B, farthest from the geodesic A, are
not antipodal points. The circumradius construction is valid if R < 7vk /2, that is, when
2 is contained in a hemisphere, and when the ray @ is replaced by a geodesic segment
CDC’, where C’ is the point antipodal to C.

THE ISOPERIMETRIC INEQUALITY AND HOLONOMY

There is a sense in which the motion of the wheel can be thought of as parallel translation
for a connection on an affine line bundle over M. The equations 6z = A+7¢2, in the flat
case, and Gz Ly = 2m(A + A;) — kAA,, in the curved case, and their algebraic equivalents
are statements about the holonomy of this connection. This holonomy captures the essence
of the isoperimetric inequality, since the inequality boils down to the trivial observation
that L > &, ‘
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