STEEPEST DESCENT AND ASCENT

Math 225

The method of steepest descent is a numerical method for approximating local minima (and maxima) of differentiable functions from \mathbb{R}^n to \mathbb{R} . The basic idea of the method is very simple: If the gradient is not zero where you are, then move in the direction opposite the gradient.

I find it easier to think in the opposite direction, namely, to seek out a local maximum by moving in the direction of the gradient. This could be called *steepest ascent*.

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. We want to approximate a point **a** where f takes a local maximum. Let \mathbf{x}_0 be an initial approximation (educated guess) of the maximum. The next approximation, \mathbf{x}_1 , is obtained by adding a positive multiple of $\nabla f_{\mathbf{x}_0}$ to \mathbf{x}_0 . This process is repeated, yielding a sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ in which

$$\mathbf{x}_{n+1} = \mathbf{x}_n + k \nabla f_{\mathbf{x}_n}.$$

If \mathbf{x}_0 was chosen close enough to \mathbf{a} , and if suitable conditions hold, then this sequence will converge to \mathbf{a} , that is, $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{a}$. (If you want to go towards a minimum, take k to be negative.)

A cleaner way to describe to describe this process is to define a mapping $T \colon \mathbb{R}^n \to \mathbb{R}^n$ by

(*)
$$T(\mathbf{x}) = \mathbf{x} + k\nabla f_{\mathbf{x}}$$

As a result we have that $\mathbf{x}_{n+1} = T(\mathbf{x}_n)$ for all n = 0, 1, 2, ..., and so the sequence is obtained by repeated application of T to \mathbf{x}_0 , e.g., $\mathbf{x}_4 = T(T(T(T(\mathbf{x}_0))))$. The mapping Tcan clearly be used to generate a sequence starting with any point in \mathbb{R}^n —given a point in \mathbb{R}^n , the mapping T says where the next point is. One can think of T as describing the discrete motion of a particle as it jumps from one point of \mathbb{R}^n to another. As such, it is an example of a discrete dynamical system.

Note that if $\mathbf{x} = \mathbf{a}$, the local maximum, then $\nabla f_{\mathbf{a}} = \mathbf{0}$ since \mathbf{a} is a critical point. Thus

$$T(\mathbf{a}) = \mathbf{a} + k\nabla f_{\mathbf{a}} = \mathbf{a}.$$

Since $T(\mathbf{a}) = \mathbf{a}$, that is, T doesn't move \mathbf{a} , we call \mathbf{a} a fixed point of T. Thus the problem of finding a minimum for f becomes one of finding a fixed point for T. Many important numerical methods are based on this idea of converting the problem at hand into a fixed point problem. Another method of this type that you may have seen is Newton's method.

The rate of convergence of $\mathbf{x}_n \to \mathbf{a}$ depends on the choice of k. If k is too small, the convergence is slow. On the other hand, if k is too large, the mapping can "jump" over the fixed point. Unfortunately, there isn't a single value of k that works best.

Whether or not a particular value of k works for a given function depends on the concavity of the function f—the greater the concavity the smaller k has to be. In fact, the value of k should really not be a constant at all! The value of k in $T(\mathbf{x}) = \mathbf{x} + k\nabla f_{\mathbf{x}}$ should depend on the concavity of f at \mathbf{x} , that is, the formula for T should really be

$$T(\mathbf{x}) = \mathbf{x} + \alpha(\mathbf{x})\nabla f_{\mathbf{x}},$$

where $\alpha \colon \mathbb{R}^n \to \mathbb{R}$ is some suitable positive function.

Here's the idea. Suppose we are at **x**. We want to move in the direction of $\nabla f_{\mathbf{x}}$, but how far? Thinking of **x** as constant for the moment, consider the line through **x** in the direction of $\nabla f_{\mathbf{x}}$, namely $\gamma(t) = \mathbf{x} + t \nabla f_{\mathbf{x}}$. The Math 111 function obtained by restricting f to this line is

$$g(t) = f(\gamma(t)) = f(\mathbf{x} + t\nabla f_{\mathbf{x}}).$$

It seems that the appropriate place to move to in this direction is the point where g takes its maximum. It won't necessarily be the maximum for f, but it will be the best we can do in this direction.

For what value of t does g take its maximum? That's another approximation problem, but we are down to one variable, and so we can use Math 111/112 techniques. We will approximate g with its quadratic Taylor polynomial near t = 0:

$$g(t) \approx Q(t) = g(0) + g'(0)t + \frac{1}{2}g''(0)t^2.$$

The idea is that g will take its maximum at a value of t close to where Q takes its maximum. The graph of Q is a parabola, provided $g''(0) \neq 0$. For Q to have a maximum, its graph must be concave down. This is a reasonable expectation. If we are headed for a maximum of f, the graph of f is probably concave down, which would imply that the graphs of gand Q are concave down as well. Another thing to note is that g'(0) is positive, since with increasing t we are moving in the direction of ∇f at t = 0.

You can easily verify that the value of t where Q takes its maximum under these assumptions is $t_* = -g'(0)/g''(0)$, and so we set

$$\alpha(\mathbf{x}) = t_* = -\frac{g'(0)}{g''(0)}.$$

Since g'(0) > 0 and g''(0) < 0, we have that $t_* > 0$, as expected.

We need formulas for g'(0) and g''(0) in terms of f. They are directional derivatives of f at \mathbf{x} in the direction of $\nabla f_{\mathbf{x}}$. To simplify the notation, let $\mathbf{v} = \nabla f_{\mathbf{x}}$. Then

$$g'(0) = \frac{d}{dt}\Big|_{0} f(\mathbf{x} + t\mathbf{v}) = D_{\mathbf{v}}f(\mathbf{x}) = \nabla f_{\mathbf{x}} \cdot \mathbf{v} = \nabla f_{\mathbf{x}} \cdot \nabla f_{\mathbf{x}} = \|\nabla f_{\mathbf{x}}\|^{2},$$

and

$$g''(0) = \left. \frac{d^2}{dt^2} \right|_0 f(\mathbf{x} + t\mathbf{v}) = D_{\mathbf{v}}^2 f(\mathbf{x}) = \mathbf{v} \cdot \left(H f_{\mathbf{x}} \mathbf{v} \right) = \nabla f_{\mathbf{x}} \cdot \left(H f_{\mathbf{x}} \nabla f_{\mathbf{x}} \right),$$

where $Hf_{\mathbf{x}}$ denotes the Hessian matrix of f at \mathbf{x} . Thus we have

$$\alpha(\mathbf{x}) = t_* = -\frac{\left\|\nabla f_{\mathbf{x}}\right\|^2}{\nabla f_{\mathbf{x}} \cdot \left(H f_{\mathbf{x}} \nabla f_{\mathbf{x}}\right)}.$$

Plugging this expression into the formula for T we get

(**)
$$T(\mathbf{x}) = \mathbf{x} - \frac{\|\nabla f_{\mathbf{x}}\|^2}{\nabla f_{\mathbf{x}} \cdot (Hf_{\mathbf{x}} \nabla f_{\mathbf{x}})} \nabla f_{\mathbf{x}}.$$

Using (**), as opposed to (*), will result in much faster convergence to the maximum, but at a price. Like Newton's Method, this formula can be very sensitive to initial conditions. A poor choice \mathbf{x}_0 can result in movement away from the maximum. In fact, if you're near a minimum, you'll go there!

To see this, suppose \mathbf{x} is in a region where f is concave up. Then the functions g and Q will also be concave up. The critical point of Q will be a minimum, and $\alpha(\mathbf{x}) = t_*$ will be negative instead of positive. Thus, in (**) we will be going in the direction opposite the gradient, that is, towards a minimum.

Thus (**) is both steepest ascent and descent depending on the initial approximation. In general, the map T can be chaotic. To use it to find a maximum, you should be sure you are in a region where f is concave down. Similarly, to find a minimum, you should be in a region where f is concave up. Otherwise, you should use the version with the constant coefficient. Note that with two or more variables, the graph of f can have *mixed* concavity! The conditions in the Second Derivative Test can be used to determine this.

Here are some functions to try ...

(1) $f(x, y) = -x^2 - 4y^2$ (2) $f(x, y) = -x^2 - y^4$ (3) $f(x, y) = x^2 - y^2$ (4) $f(x, y) = x^2 + xy + y^2$ (5) $f(x, y) = x^3 + 3xy - y^3$

Now for the challenge ... find the approximate values of the local minima of

$$f(x,y) = 1 + x - y - 2x^{3} + x^{6} + 6xy^{2} + 3x^{4}y^{2} + 3x^{2}y^{4} + y^{6}$$

and their approximate locations. You should start by looking at the graph and level curves of f.

ROBERT FOOTE, SPRING 1996, REVISED FALL 2007