
HOW TO THINK ABOUT POINTS AND

VECTORS WITHOUT COORDINATES

Math 225

Points

Look around. What do you see? You see objects: a chair here, a table there, a book on
the table. These objects occupy locations, or points. A physical object actually occupies
infinitely many points, but typically you can identify particular points associated with an
object: the corners of the table, the center of mass of the chair, the exact location in space
of the center of the period at the end of the first sentence on page 43 of the book as it
sits on the table. The last example can be talked about precisely even though it would be
hard to pinpoint the location of the period—as soon as you pick up the book and turn to
page 43 you move the period to a new location. We can give names to points that we want
to talk about: P for the location of the period (or at least where it was before you picked
up the book), Q, R, S, and T for the corners of the table, C for the center of mass of the
chair. Given these points we can talk about things they determine: the line

←→
PQ, the line

segment RT (a diagonal of the table), the triangle �PTC , or the plane containing this
triangle.

Even though General Relativity tells us otherwise, let’s pretend that we live in a three-
dimensional Euclidean space, which we will denote by E3 (the exponent stands for the
dimension of the space, not an algebraic operation). The points in space are elements of
the set E3: P,Q,R, S, T,C ∈ E3. The line segments, lines, triangles, planes and other
objects they determine are subsets of E3.

If we restrict our attention to a particular plane, say the table top or the chalkboard,
we can refer to it as E2, a two-dimensional Euclidean plane. Given two points A,B ∈ E2

you can talk about the circle centered at A and passing through B.
Certain numbers are associated with these objects: the length of RT (which is also the

distance between R and T ), the area of �PTC , the circumference of the circle centered
at A that passes through B, the angle of inclination above the table that P makes when
viewed from the corner Q of the table, measured in degrees or radians.

None of this should seem strange. This is how you thought about geometry in high
school.

Now think for a moment about what you don’t see. When you look at the center A
of the circle in E2, you don’t see an ordered pair of numbers (like (3, 2)). When you
think about the center of mass C of the chair, you don’t think about an ordered triple of
numbers (like (5,−1, 2)). In other words, you don’t see coordinates. Similarly, you don’t
see equations for the circle or line.
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This is not to say that coordinates aren’t useful. They can be very useful. If you
really want to talk about P carefully, it is helpful to take a coordinate system with origin
at one of the corners of the table, two axes along edges of the table, and the third axis
perpendicular to the table. Once the coordinate system is established, you can measure
carefully and find the coordinates of P relative to this coordinate system. If someone
else has done this, you may want to share information. But you may be using different
coordinate systems! Some things you share will agree, such as distances, areas, angles.
Other things will disagree, namely the coordinates of points and equations of lines. The
things you agree on are purely geometric and independent of any coordinate system you
might use. The things you disagree on are artifacts of the coordinate systems you are
using. If you need to communicate things that depend on a coordinate system, you either
need to agree on a particular coordinate system to use, or find formulas that will allow
you to switch between the different coordinate systems.

A choice of coordinate system usually depends on the problem being studied. If you are
thinking about a circle in E2, you may want to choose the origin to be the center of the
circle. Why? Because the equation for the circle is simplest, namely x2 + y2 = 25, if the
radius is 5, as opposed to (x− 3)2 + (y− 2)2 = 25 if the origin is somewhere else (namely,
the point with coordinates (3,2)). Suppose you carry the chair up to the roof of Goodrich
Hall and throw it over the edge, making it tumble as it falls. In this case it’s handy to use
a moving coordinate system in which the origin is the center of mass of the chair and the
coordinate axes rotate with the chair as it spins.

There are other kinds of coordinate systems. The equation for a circle of radius 5 is
very simple if you use polar coordinates with the origin at the center of the circle, namely
r = 5. Similarly, in three dimensions the use of cylindrical or spherical coordinates often
helps in certain situations. In this class we will have the opportunity to use coordinates in
which the coordinate “lines” are parabolas, ellipses, or hyperbolas!

We are used to using language like “the point P (3, 5,−1).” Of course what we really
mean is that the coordinates of P are (3, 5,−1) relative to some coordinate system we
have in mind. Similarly, we talk about R

3 as being space, when in actuality, R
3 is the

collection of all coordinates: R
3 = {(x, y, z) | x, y, z ∈ R}. The identification of R

3 with
three-dimensional space is the choice of a coordinate system. These comments are obvious
when pointed out this explicitly, but are easy to forget when involved in the details of an
example or problem.

Some objects are in motion: an airplane, a flying insect, your friend walking across
the room. A moving particle in the plane can be described as a function of the form
γ : R → E2. If t ∈ R is a particular time, then γ(t) ∈ E2 is the location of the particle
at that time. If we are using a coordinate system, the motion can be expressed in terms
of the coordinates. At time t, denote the coordinates of the particle by (x(t), y(t)). Then
x, y : R→ R are the coordinate functions. For example, (x(t), y(t)) = (3 cos t, 2 sin t) is the
coordinate description of a particle moving counter-clockwise around an ellipse. When we
are being casual we might write γ(t) = (x(t), y(t)) = (3 cos t, 2 sin t), but notice that this
is the same error we make when we talk about “the point P (3, 5,−1),” namely, it is an
identification of the location, γ(t), of the particle with the coordinates, (x(t), y(t)), of its
location. Much of the time there is no harm in this, unless the identification becomes so
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ingrained that we have trouble making the distinction.

Vectors

When you look around you, points are easy to see. A point is just an idealized notion
of position. You start seeing vectors when you think about how to get from one point to
another. Let P and Q be two points in E2, and consider the segment PQ. The idea of
moving along this segment from P to Q gives the segment a direction, or orientation, and
this is one way to think about the vector

−→
PQ. We will call this vector the displacement

vector from P to Q. This same vector can be used to displace any other point R in
the plane. If P , Q, and R are not colinear, then there is a fourth point S so that the
quadrilateral PQSR is a parallelogram (draw a picture!). Then

−→
RS =

−→
PQ, that is, the

displacement that takes P to Q also takes R to S. (Think about how to do this if P , Q,
and R lie on the same line.) Thus the vector v =

−→
RS =

−→
PQ determines a rigid motion of

the entire plane. Each point is displaced along a line parallel to
←→
PQ in the same direction

and with the same distance. Note that displacement vectors depend on the Euclidean
geometry of E2, but not on coordinates—you don’t have to think about ordered pairs of
numbers to visualize an arrow from one point to another.

You may be used to locating points by using position vectors. However the use of
position vectors requires some particular point O to be the origin. The point P is identified
with the vector

−→
OP . A different choice of origin would identify P with a different vector.

If you don’t have an origin, you can still think about points, but you can’t think about
them as vectors. The identification of points and vectors is origin-dependent. It’s better to
think about points and vectors separately, and so I tend to avoid position vectors. Velocity
vectors, on the other hand, are origin-independent, as we will see. The upshot of this is
that single points do not determine vectors. Rather, pairs of points determine vectors.

Note that everything said in this section applies to displacement vectors in E3 as well.

The Geometric Algebra of Points and Vectors

The collection of displacement vectors (whether we are in E2 or E3) forms a vector space.
Vector addition satisfies the parallelogram law, namely,

−→
PQ+

−→
QS =

−→
PR+

−→
RS =

−→
PS (draw

the picture). Scalar multiplication also satisfies some obvious properties. For example, if
M is the midpoint of PQ, then

−−→
PM = 1

2

−→
PQ. Also,

−→
QP = −−→PQ.

The difference between E2 and E3 is the dimension of the space of displacement vectors.
The dimension for E2 is 2, for E3 it is 3. This should be fairly intuitive. If P , Q, and R

are three non-colinear points in E2, then the vectors
−→
PQ and

−→
PR form a basis. Similarly,

if P , Q, R and S are four non-coplanar points in E3, then the vectors
−→
PQ,

−→
PR, and

−→
PS

form a basis.
It turns out to be very useful if we extend the notions of addition and subtraction of

vectors to certain combinations of points and vectors. In particular, it’s nice to think of
the process of applying the displacement vector

−→
PQ to the point P (resulting in the point

Q) as adding
−→
PQ to P .
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Definition. The sum of P and
−→
PQ (written P +

−→
PQ) is the point Q. More generally, if

P is any point and v is any vector, let Q be the point such that v =
−→
PQ, and define P +v

to be Q. (You need to draw the picture to make sense of this.)

Suppose P is a point and v and w are two vectors. With the definition of addition just
given, it can be shown that

(P + v) + w = P + (v + w) = (P + w) + v.

These really mean different things! Draw a picture! In all three you are going from one
corner of a parallelogram, namely P , to the opposite corner, but you are taking differernt
routes. In two of the expressions you are following the two different paths along the edges
of the parallelogram. In the remaining expression you are going along the diagonal. Which
is which? Note that the sums in the first and third expressions are all between points and
vectors. In the second expression, the first sum is between a point and a vector, whereas the
second sum is between two vectors, that is, it’s the addition in the vector space. Since these
three expressions are all equal, we can drop the parentheses and simply write P + v + w.

If P + v = Q, it seems reasonable to have v = Q − P . This subtraction requires a
definition also.

Definition. If P and Q are points, then Q− P is defined to be the displacement vector−→
PQ.

If P+v = Q, then v is
−→
PQ, by the definition of addition. By the definition of subtraction,

v is also Q − P . Note this says that in an equation of points, you can subtract a point
from both sides, resulting in an equation of vectors.

It turns out that the familiar vector-algebraic operations (adding or subtracting the
same quantity to both sides of an equation, or multiplying both sides of an equation by
the same scalar) are legitimate, provided

(1) We never add two points, and
(2) We never multiply a point by a scalar.

The reason is that these operations don’t make sense geometrically!
If all of this seems like just so much playing with notation, here are some things to

consider. What we have defined is an algebraic way to talk about how points and displace-
ment vectors interact, and it works without referring to coordinates or position vectors. In
the next section we will see that if we do use coordinates or position vectors, this algebra
is exactly the same as what you are used to. The gain, which is not easy to appreciate
when you first see this, is conceptual. This point of view leads to a deeper understanding
of two and three-dimensional space, and of the problems in these spaces that we want to
understand. We will be able to talk about problems in a way that minimizes the mention
of things that are incidental (coordinates of points and components of vectors relative to
the standard basis for example), thereby focusing on the things that are central.

The Full Circle—Coordinates and Position Vectors

Okay, suppose that you are working a problem with coordinates, which you are also
used to treating as position vectors. How are the operations you are used to related to
those just defined?
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Here is what you are used to, treating everything as vectors: if p and q are (3, 2) and
(5, 1), respectively, then the vector from p to q is q−p = (2,−1). Also, if you move from
p to r using the vector v = (4,−3), you get r = p + v = (7,−1).

There are three observations to make here.

(1) This works if you are using Euclidean coordinates (the (x, y) or (x, y, z) coordinates
you usually use in which the coordinate axes are perpendicular and the “unit”
markings along the axes have the same length), but not polar coordinates.

(2) This works in any rectangular coordinate system, in which the axes are perpendic-
ular, but the unit markings on different axes can be spaced differently.

(3) In fact, this works in any linear coordinate system (another name is affine coor-
dinate system), in which the coordinate axes don’t even need to be perpendicular,
although they still need to be lines.(A linear, but non-rectangular coordinate sys-
tem is the analog of having a basis for a vector space that isn’t orthonormal.)

Since the coordinates and position vector of a point depend on which coordinate system
is being used, I don’t like to say that P is (3, 2) or that (3, 2) is a point. It’s better to say
that we are using a particular coordinate system, and in that system the coordinates of P
are (3, 2).

Since we are distinguishing between coordinates and vectors, it’s good to have distinct
notation for these concepts. Thus the position vector of P is 3i+ 2j, where i and j are the
basis vectors for the coordinate system, i.e., i is the vector from the origin to the point with
coordinates (1, 0), and j is the vector from the origin to the point with coordinates (0, 1).
Note that

−→
PQ is a vector, not a point, and so we write it as 2i − j, not as (2,−1). (Note

that i and j need not be orthogonal or unit vectors! This can happen if the coordinate
system is non-Euclidean.)

With this different point-of-view, the statement above becomes: if P and Q are points
with coordinates (3, 2) and (5, 1), respectively, then the vector

−→
PQ is 2i − j, that is, to

get the coefficients of the vector from P to Q you subtract the coordinates of P from
the coordinates of Q. If you apply the displacement vector v = 4i − 3j to the point P
with coordinates (3, 2), you get the point R with coordinates (7,−1), that is, you add the
coefficients of the vector to the coordinates of the point to get the coordinates of the new
point.

These examples illustrate the reasons we called the new operations (defined in the
previous section) addition and subtraction, instead of something else. The operations are
closely related to addition and subtraction of vectors, and in fact, they are the same as
addition and subtraction if you identify (I would say “confuse”) points with their position
vectors.

To be less wordy, we will write these operations as

Q− P = (5, 1)− (3, 2) = 2i− j and P + v = (3, 2) + 4i− 3j = (7,−1) = R.

Technically speaking, this is an abuse of notation, since P , Q, and R really aren’t (3, 2),
(5, 1), and (7,−1), rather the latter are the coordinates of the former. Nonetheless, this
notation carefully distinguishes between points and vectors, which is the main point.
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A Rigorous Approach to These Ideas

The previous sections are not rigorous mathematics. To be rigorous, the terms need to
be precisely defined and the properties proved. On the other hand, the ideas presented are
how mathematicians intuitively think about these things.

A Final Word

The title of this handout is a bit misleading. We aren’t going to think entirely without
coordinates. The point is to separate the geometry from the coordinates. The important
facts that we are interested in studying are independent of any coordinate system. In
some problems a coordinate system is very useful, particularly if detailed computations
are needed. Believe it or not, we will be able to solve some problems completely without
using coordinates! Most often, the solution without coordinates is easier than the one with
coordinates! A better title might be “A coordinate-independent way to think about points
and vectors.”

The choice of a coordinate system is somewhat arbitrary. A “good” coordinate system
for a particular problem will reflect some symmetry or other aspect of the problem. When
a coordinate system is used to solve a problem, it’s good to think about what parts of the
solution depend on the coordinates and what parts don’t. The important quantities will
be the ones that don’t depend on the coordinates.

Here’s an idea of what I mean. Suppose you are thinking about a physics problem in
which some particle mass is moving around in a plane subject to some force. The point of
the problem might be to find the particle’s velocity at some moment. The problem may
specify a coordinate system, or you may be expected to choose one. The usual process is
to resolve all vectors into their x and y components, and to make all computations using
these components. If vx and vy denote the components of velocity, your answer might
be vx = 3 and vy = 4. The numbers 3 and 4 by themselves aren’t all that important,
since they depend on the coordinate system. What is important is the velocity vector,
which is the linear combination v = 3i + 4j. This linear combination does not depend
on the coordinate system. Here’s what this means. Suppose another person solves the
problem with a different coordinate system. This coordinate system will have different
basis vectors, which we might denote by I and J. The components vx and vy the second
person gets might be 1+2

√
3 and 2−√3. If both people have done the problem correctly,

they will find that 3i + 4j = (1 + 2
√

3)I + (2 − √3)J. Thus they really do get the same
answer. Their answers just look different. (The lesson to be learned from this is that when
you get vx = 3 and vy = 4, you’re not quite done. Your answer should be 3i+4j.) A third
person might come along and solve the problem without using coordinates at all (this is
possible for some problems), getting some expression for v. Assuming no errors have been
made, if he expresses his v as a linear combination of i and j, he will get v = 3i + 4j.

Robert L. Foote
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