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Abstract We define the notion of a pendulum on a surface of constant cur-
vature and study the motion of a mass at a fixed distance from a pivot. We
consider some special cases: first a pivot that moves with constant speed along
a geodesic, and then a pivot that undergoes acceleration along a fixed geodesic.
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1 Introduction

In [1], the first and third authors investigated the motion of barbells on surfaces

of constant curvature. It is natural to extend this study to pendulums.
Consider a moving particle on a surface. An unconstrained particle would,

of course, move along a geodesic with constant speed. The point of our work is
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to investigate the motion of a particle constrained to be at a constant distance
from a point with a given motion.

A pendulum problem on a surface of constant curvature is defined as a pivot
point and a mass connected to the pivot by a rigid massless rod of fixed length
3. Assume that the pivot is constrained to move along some fixed curve with
prescribed motion. The rod provides the only force on the mass in order to
keep the mass a fixed distance from the pivot. No torque is applied to the rod,
and so the acceleration of the mass is always in the direction of the rod.

Figure 1 above illustrates the motion of a pendulum. The mass m is at A and
the pivot is at T. The rigid rod is the segment A T. Our results concern the case
in which the pivot moves along a geodesic. We let # denote the angle between
the rod and the geodesic.

We shall prove the following:

Theorem A Assume that the pivot of a pendulum moves with constant speed v
along a geodesic on a surface with constant curvature K. Let 0(1) be the angle
that the rigid rod makes at time t with respect to the direction of pivot motion.
Then the pendulum satisfies the non-linear differential equation

d*e

= —v? K sin(6) cos(0). (1)

The generic solutions are periodic. Moreover, the period is approximately
2n/v«/|K| when 0 is sufficiently close to a stable equilibrium for all t. If K > 0,
then there are stable equilibria at 6 = 0 and 6 = w and unstable equilibria at

8 =n/2and 6 = 3n/2. If K < 0, then there are unstable equilibria at 6 = 0 and
6 = m and stable equilibria at 6 = /2 and 6 = 37 /2.

This differential equation indicates that the dynamics of a pendulum on a
curved surface are sensitive to the absolute motion of the pivot, in contrast to
the Euclidean case. It is somewhat surprising that the length of the pendulum
does not play a role. Reparameterizing by the distance s = vt traveled by the
pivot, the differential equation can be rewritten as

d*o
ds?

= — K sin(@) cos(0).

Fig. 1 The motion
of a pendulum
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This shows that the dynamics of the pendulum do not depend on the magnitude
of the speed of the pivot, but rather on the distance traveled by the pivot and
the fact that its speed is constant. From this perspective, the period of the
motion should be thought of as a distance, as opposed to a time. For small-
amplitude oscillations sufficiently close to a stable equilibrium, the period is
approximately 27 /,/TK]|. On a sphere, this is the circumference, and it follows
that the mass of the pendulum is approximately following a geodesic slightly
offset from the geodesic path of the pivot, that is, it approximately follows
a path it would take were it not connected to the pivot. On a hyperbolic
plane, the period is a natural distance identified by the pendulum dynamics.
In contrast to the spherical case, the mass does not follow an approximate
geodesic. Instead, it oscillates about a constant distance curve.

Theorem B Assume that the pivot of a pendulum moves with constant speed v
along a geodesic on a surface with constant curvature K. Let (t) be the angle
that the rigid rod makes at time t with respect to the direction of pivot motion. If
the pendulum starts at a stable equilibrium with initial intrinsic angular speed
db/dt|—o = v/IK], then it monotonically and asymptotically approaches an
unstable equilibrium as t — oco. More specifically, if

(7]
K >0, 0(0) =0, and d— =vv K,
dt li=0

then 0 is increasing and
lim 6() = =
oo ) = 2
Similarly, if

K<0, 60)= % and = v/—K,

then 8 is increasing and

lim 6(t) = 7.
{—00

It is interesting to note that when K > 0 and the motion takes place on
a sphere of radius R =1/+/K in R?, the initial intrinsic angular speed in
Theorem B is equal to the constant extrinsic angular speed of the pivot:
vWK = v/ R=w.

As a consequence of the Proofs of Theorems A and B, we derive a
conservation law for pendulum motion. We also consider the dynamics of the
pendulum when the pivot is allowed to accelerate.

A barbell in a space of constant curvature K consists of a pair of masses
joined by a massless rigid rod of fixed length d. We say that the barbell is
balanced if the masses are equal. Consider motion of a balanced barbell such
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that its center of mass moves along a geodesic. Note that the motion of a
pendulum can also be considered as the motion of half of a balanced barbell.

If the entire motion of the barbell is along the geodesic, we say that it moves
with a direct-motion. When the balanced barbell moves such that the rod is
at a right angle to the direction of motion, we shall refer to the motion as a
right-motion. If the direction of the rod from the center of mass to the leading
mass makes an angle 8 (8 # 0, w/2) with respect to the geodesic of motion,
we shall refer to the motion of the barbell as skew-motion. In earlier work [1],
the first and third authors showed that the direct-motion and right-motion of a
balanced barbell are free (unconstrained) motions (Fig. 2).

Theorem C If the midpoint of a balanced barbell moves along a geodesic on
a surface of constant curvature with constant speed, then the motion of the
individual masses is symmetric and identical to the motion of the equivalent
pendulum problem.

We will assume the following convention for spaces of constant curvature
K it K >0,
cosg(s) = cos (s«/f) , sing(s) = sin (5«/?) , tan g (s) = tan (s«/?)
and if K < 0, then
cosk(s) = cosh (sx/——_) , sing(s) = sinh (s«/—_) ,
tan g (s) = tanh (s\/j) .

Theorem D Assume that the pivot of a pendulum moves with speed v(t) along
a geodesic on a surface with constant curvature K. Let 6(t) be the angle that the
rigid rod makes with the direction of the motion of the pivot. Then the pendulum
satisfies the differential equation

d’6

dr?
where a(t) = dv/dt is the scalar acceleration. This has equilibria at 6 =0, 7.
They are stable when K > 0 and unstable when K < 0.

= —Kuv(t)? cos8(1) sin0(f) + V| Kla(t) cotgx 8 sin6(¢),

Q ® .
Il \ geodesic

geodesic geodesic
O O

a b c

Fig. 2 a Direct-motion, b right-motion, ¢ skew-motion
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We analyze the small-amplitude oscillations in the special case when
v(t) =vg+at

2 Pendulum Motion for Constant Speed Pivots

Figure 3 below illustrates additional quantities which will be used in the Proof
of Theorem A. We let b denote the distance from m to the geodesic and we
let a denote the distance from the pivot T to the point D. Let § be the distance
from the pivot to the mass, i.c., the length of the rod. We observe that the
geodesic triangle AADT is a right triangle with right angle at D. We let o
be the angle at A. The set {a;, a} is an orthonormal frame at the position
of the mass. Note that in the case K > 0 we must require that § <R to
guarantee that the mass and the rod remain on the same side of the geodesic
line.

Proof of Theorem A

Case I: K > 0 Let é be the length of the rigid rod. We assume that § < 7 R,
where R = 1/4/K, and take the motion to be on the sphere x2 + y* + z2 = R?
in R?. The angular speed of the pivot is @ = v/ R = v+/K, and the location of

the pivot can be taken to be R(cos(a)t)h— sin(a)t)j). Letting 6 be the angle

between the direction of motion of the pivot and the rigid rod, the possible
locations of the mass are parameterized by

F(t,0) = Rsing 8 [sin 6k + cosf (— sin(wt)i + cos(a)t)j)]
+Rcosg S (cos(wt)i + sin(a)t)j) .
For a particular motion of the mass we have 8 = 8(¢), and the motion of the

mass is o (£) = F(t, 6(f)).

Fig. 3 Skew-motion
of a pendulum
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The acceleration in R? is then

d’o do* . .
e [E] Resin 5 [sin(@(0)k + cos(0(1)

X (— sin(wi)i + cos(wt)j)] +
2| 9] Rsing s sin( i+ sin(w)j
+ [E wRsing 8§ sin( (t))(cos(a)r)l-l—sm(w )J) -
— w?Rsing 8 cos(G(t))( — sin(wt)i + cos(a)t)j) —

—w?Rcosg § ( cos(a)t)i + sin(wt)j) +
n [ff]RsmK 8[@03(9([))k — sin(@(0)
X (— sin(a)t)i + cos(a)t)j) ]

We take {a[, a;} to be an oriented, orthonormal frame for the tangent
space of the sphere at the point A (the location of the mass) such that aj is
pel‘pendicular to the rigid rod at A. For a general location of the mass we have

a; = 22/|122 ], which for the mass at location o (f) becomes

a, (1) = cos(6(6))k — sin(0(t))< — sin(w0)i + cos(wz)j).

If g(,) denotes the metric on the tangent space of the sphere, then the com-
ponent of d%o /di? tangent to the sphere and normal to the rod is g( o az(t)>,
which simplifies to

d’o ) d%e
(d : ,az(t)) = RSan5<|: P j| + w sm(9(t))c0s(0(t)))

Since the intrinsic force on the mass is applied only along the rigid rod,
g(" o az(t)> = 0, which yields the differential equation

arr

0 s GO (9[)——5”_2 in(26(1)
pri w* sin cos(B(t)) = 5 sin 5

Note that § = 0, n/2, &, 37 /2 are equilibrium solutions. Making the substitu-
tion u = 26, the equation becomes

d*u

W = —Kv’sinu.



Dynamics of Pendulums 103

This is the equation of a planar pendulum in Euclidean space subject to a
constant gravitational field, which is known to be periodic using energy consid-
erations. The small-amplitude period is 27 /v4/K. Tt has a stable equilibrium
at u =0 mod 2x, corresponding to 8 =0, 7. Similarly, it has an unstable
equilibrium at 4 = 7 mod 2m, corresponding to 6 = 7/2, 37 /2.

Case II: K <0 For simplicity, we assume the motion takes place in the
hyperbolic plane of curvature K. We use the hyperboloid model in R3,

1
K’

which inherits its geometry from the Minkowski inner product

Py - = z2>0,

gia, b, o), (x,y,2)) =ax+by—cz.

Similar to Case I, set R = 1/4/—K and w = v/R = v4/—K, and assume the
pivot moves along the geodesic R(sinh(a)t)i + cosh(a)t)lA(). The circle of radius
8 about the origin of the model is parameterized by
¢(6) = Rsing 8(cos i+ sin6j) + Rcosg S k.
Translating this circle to one centered at the pivot by means of the Minkowski
isometry with matrix
cosh(wt) 0O sinh(w()
A =10 1 0
sinh(wf) 0  cosh(wt)
yields the general position of the mass:
F(t,6) = A(c(9)
= Rsing d [ sin Qj +cos @ ( sinh(wt)ﬁ + cosh(wt)i)]

+ Rcosk 8 ( cosh(wt)ﬁ + sinh(wt)i) .

From this point the proof is nearly identical to that of Case I with the
substitution of hyperbolic functions for circular ones in the appropriate places,
the permutation of the basis vectors, and the use of the Minkowski inner
product.

The reversal of the stable and unstable equilibria result from the change in
sign of K. More specifically, consider the substitution u = 26 + x. This changes
the differential equation to

d*u . .
Z— = Kv’sinu = —|K|v?sinu,
dr?
and the reasoning can proceed as in Case L. 0

@ Springer
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Proof of Theorem B By Theorem A, 9 satisfies

el Kv?
W:-szsine cos@z——zv— sin 26, 2)

If K>0,letu=268.1f K <0, let u=206+ 7. In both cases the equation
becomes

d*u

- = —|K|v?sinu,

which is the equation of a planar pendulum of length 1 in Euclidean space
subject to a constant gravitational field of magnitude g = | K|v?. Its stable and
unstable equilibria at u = 0 and u = & correspond to the two stable and two
unstable equilibria of the pendulum on the surface, respectively. The velocity
du/dt at the stable equilibrium of the system required to have the pendulum
mass approach the unstable equilibrium asymptotically satisfies the energy
equation

m [ du i 9

2 [dt ‘::o] = 2mlKlv",

Le., the kinetic energy at t = 0 is equal to the change in potential energy as
! = o0. Solving for du/dt yields

du do
ELO —20/[K], or ELO — w/IKI.
This completes the Proof of Theorem B. a

3 Pendulum Conservation Law on Surfaces of Constant Curvature

Proposition 1 Under the hypothesis of Theorem A, the following combination
of intrinsic angular speed and position is constant:

9 2
2(%) — Kv?cos 26. 3)

Proof We consider a change of variables in the expression (2) as in the Proofs
of Theorems A and B. If K > 0, let u = 26. If K < 0, let u = 26 + x. In both
cases the equation becomes

d*u

i —|K|[v?siny,

which is the equation of a planar pendulum of length 1 in Euclidean space
subject to a constant gravitational field of magnitude g = |K|v2. The kinetic

&H Soringer
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energy of this pendulum is (m/2)(du/dr)?. Taking the potential energy to be
zero when u = /2, the potential energy is —m|K|v? cos u. Their sum,

du\?
%(77) — lelv2 cos u,

is constant. Changing back to @ and simplifying, this becomes (3).

Proof of Theorem C 1t should now be clear that the solutions of the constant
speed pivot pendulums are symmetric with respect to the stable equilibria on
a surface of constant curvature (see also [2-4]). Now we consider the case of
the balanced barbell, such that the center of mass moves with constant speed
along a geodesic. The symmetry of solutions for the pendulum imply that the
masses can be treated independently and that if we do so, the solutions for
the motion of the independent masses will lie at a fixed distance § = d/2 from
the pivot (which corresponds to the center of mass) and that a geodesic from
one mass to the other will always pass through the pivot. This proves the
theorem.

4 Pendulum Motion for Accelerated Pivots

Proof of Theorem D Now consider the case of pendulum motion on a surface
of curvature K when the pivot accelerates along a geodesic. Let s(f) denote
the arc-length parameter of the pivot at time t. When K > 0, the equation of
motion of the mass is given by o (f) as above. (c.f. Proof of Theorem A).

Once again, let {a;, a3} be an oriented orthonormal frame for the tangent
space of the surface al the point A such that a; is perpendicular to the rigid
rod at the point A. We have

ay(f) = cos(0())k — sin(e(t))( — sin(s()/ R)i + cos(s(0) /R)j).

Again, the force on the mass acts in the direction of the rod, and so
g(dzo/dtz, az(t)) = 0, which simplifies to
Reines (L0 4 YO 00 cos6() ) — a@) sin8(0) cosk § = 0
sin — + ——sin cosO() ) —a n 0 =0,
K de R2 oS S1 COSk
where v(r) = ds/dt and a(t) = d*s/di* are the speed and scalar acceleration of
the pivot. This can be rewritten as
d*6
dr?
where cotyx 8 = cosg 8/ sing 8. When K < 0 the computation is similar, and
one gets

— —Ku(n)? cos (1) sin6(r) + v Ka(t) cotg § sin (1),

2
E;[—g = —Kv(t)? cos () sind(f) + v — Ka(t) cotg 8 sin6(f),

@ Springer
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and so the general formula is

% = —Kv(f)% cos0(¢) sin o) + \/|7<—|a(t) cotg & sinB(f).

The equilibria at 6 = 0, 7 are still present, and by linearizing one casily
sees that they are still stable when K > 0 and unstable when K < 0. The other
equilibria, however, are gone because the other angles for which d26/de? = 0
now depend on ¢. This proves Theorem D.

The formula above should be compared with the formula in Theorem A.
Note that if a(f) = g and K — 0, the equation reduces to the standard pendu-
lum equation for constant acceleration,

&y g
7 + 3 sin(y) =0,

where ¥ =0 — 7.
For additional insight, assume that s(t) = vt + ar’ /2, where v, and a are
constant. We have
d*o
dr
When K > 0, linearizing near § = 0 yields
d’6 )
) ~ (—K(vo +at)? + VKa coty 3)9(0.
Linearizing near 6 = 7 and replacing 6 — = by ¥ yields
dZ
Tt;/i R (—K(vo + af)? - «/Eacot,( 8)10([).
These are similar to a pendulum in Euclidean space subject to an increasingly
strong gravitational force. One surmises that the resulting oscillations have de-
creasing amplitude and period, something borne out by computer experiments,
When K < 0, we analyze the situation more heuristically. We have
d*
dr?
Let 6o(¢) € [0, 7] satisfy —K(vg + at)? cos 6p(f) + /—Kacotg § = 0, which is
possible for all sufficiently large 1. We see that fy(/) is smooth and approaches
/2 monotonically from above as f — oo. Assume that a(r) is close to 6y(N
and set Y (1) = 6(1) — 6y(r). Assuming ¢ is large, we make the approximations
sinly(f) 2 1 and 67 (1) ~ 0. With these approximations, linearizing in ¥ yields

= (—K(vo + ar)? cos0(f) + /| Klacotg 8) sin6(t).

e (—K(vo + ar)? cosO(t) + v —Kacotg 8) sin 6(t).

2

'y )
—d?- ~ K(vg + at)“y.

This is similar to a pendulum in Euclidean space subject to an increasingly
strong gravitational force. One surmises that the resulting oscillations have
decreasing amplitude and period, and that the center of the oscillations tend
toward /2 from above, which is also observed in computer experiments. O

N Springer
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