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Abstract

In [1], the first and third authors investigated the motion of barbells on
surfaces of constant curvature. It is natural to extend this study to pendu-
lums.

We define the notion of a pendulum on a surface of constant curvature
and study the motion of a mass at a fixed distance from a pivot. We consider
some special cases for the pendulum.

Case 1: a pivot that moves with constant speed along a fixed geodesic.
Case 2: a pivot that undergoes acceleration along a fixed geodesic.
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1. Introduction

Consider a moving particle on a surface. An unconstrained particle would,
of course, move along a geodesic with constant speed. The point of our work
is to investigate the motion of a particle constrained to be at a constant
distance from a point with a given motion.

A pendulum problem on a surface of constant curvature is defined as a
pivot point and a mass connected to the pivot by a rigid massless rod of
fixed length δ. Assume that the pivot is constrained to move along some
fixed curve with prescribed motion. The rod provides the only force on the
mass in order to keep the mass a fixed distance from the pivot. No torque
is applied to the rod, and so the acceleration of the mass is always in the
direction of the rod.

m A

T
θ

Figure 1. The motion of a pendulum

Figure 1 above illustrates the motion of a pendulum. The mass m is at A
and the pivot is at T . The rigid rod is segment AT . Our results concern the
case in which the pivot moves along a geodesic. We let θ denote the angle
between the rod and the geodesic.

We shall prove the following:

Theorem A. Assume that the pivot of a pendulum moves with constant speed
v along a geodesic on a surface with constant curvature K. Let θ(t) be the
angle that the rigid rod makes at time t with respect to the direction of pivot
motion. Then the pendulum satisfies the non-linear differential equation

d2θ

dt2
= −v2K sin(θ) cos(θ).

The solution is periodic. Moreover, the period is approximately 2π
/
v
√
|K|

when θ is sufficiently close to a stable equilibrium for all t. If K > 0, then

2



there are stable equilibria at θ = 0 and θ = π and unstable equilibria at
θ = π/2 and θ = 3π/2. If K < 0, then there are unstable equilibria at θ = 0
and θ = π and stable equilibria at θ = π/2 and θ = 3π/2.

This differential equation indicates that the dynamics of a pendulum on
a curved surface are sensitive to the absolute motion of the pivot, in contrast
to the Euclidean case. It is somewhat surprising that the length of the
pendulum does not play a role. Reparameterizing by the distance s = vt
traveled by the pivot, the differential equation can be rewritten as

d2θ

ds2
= −K sin(θ) cos(θ).

This shows that the dynamics of the pendulum do not depend on the mag-
nitude of the speed of the pivot, but rather on the distance traveled by the
pivot and the fact that its speed is constant. From this perspective, the pe-
riod of the motion should be thought of as a distance, as opposed to a time.
For small-amplitude oscillations sufficiently close to a stable equilibrium, the

period is approximately 2π/
√
|K|. On a sphere, this is the circumference,

and it follows that the mass of the pendulum is approximately following a
geodesic slightly offset from the geodesic path of the pivot, that is, it approx-
imately follows a path it would take were it not connected to the pivot. On a
hyperbolic plane, the period is a natural distance identified by the pendulum
dynamics. In contrast to the spherical case, the mass does not follow an
approximate geodesic. Instead, it oscillates about a constant distance curve.

Theorem B. Assume that the pivot of a pendulum moves with constant speed
v along a geodesic on a surface with constant curvature K. Let θ(t) be the
angle that the rigid rod makes at time t with respect to the direction of pivot
motion. If the pendulum starts at a stable equilibrium with initial intrinsic

angular speed dθ/dt|t=0 = v
√
|K|, then it monotonically and asymptotically

approaches an unstable equilibrium as t→ ∞. More specifically, if

K > 0, θ(0) = 0, and
dθ

dt

∣∣∣
t=0

= v
√
K,

then θ is increasing and

lim
t→∞ θ(t) =

π

2
.
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Similarly, if

K < 0, θ(0) =
π

2
, and

dθ

dt

∣∣∣
t=0

= v
√−K,

then θ is increasing and
lim
t→∞ θ(t) = π.

It is interesting to note that when K > 0 and the motion takes place
on a sphere of radius R = 1/

√
K in IR3, the initial intrinsic angular speed

in Theorem C is equal to the constant extrinsic angular speed of the pivot:
v
√
K = v/R = ω.

As a consequence of the proofs of Theorems A and B, we derive a con-
servation law for pendulum motion. We also consider the dynamics of the
pendulum when the pivot is allowed to accelerate.

A barbell in a space of constant curvature K consists of a pair of masses
joined by a massless rigid rod of fixed length d. We say that the barbell is
balanced if the masses are equal. Consider motion of a balanced barbell such
that its center of mass moves along a geodesic. Note that the motion of a
pendulum can also be considered as the motion of half of a balanced barbell.

If the entire motion of the barbell is along the geodesic, we say that it
moves with a direct-motion. When the balanced barbell moves such that the
rod is at a right angle to the direction of motion, we shall refer to the motion
as a right-motion. If the direction of the rod from the center of mass to the
leading mass makes an angle θ with respect to the geodesic of motion, we
shall refer to the motion of the barbell as skew-motion, where θ �= 0, π/2.
In earlier work [1], the first and third authors showed that the direct-motion
and right-motion of a balanced barbell are free (unconstrained) motions.

geodesic geodesic

geodesic

Figure 2. a) direct-motion, b) right-motion, c) skew-motion

4



Theorem C If the midpoint of a balanced barbell moves along a geodesic on
a surface of constant curvature with constant speed, then the motion of the
individual masses is symmetric and identical to the motion of the equivalent
pendulum problem.

Theorem D Assume that the pivot of a pendulum moves with speed v(t)
along a geodesic on a surface with constant curvature K. Let θ(t) be the
angle that the rigid rod makes with the direction of the motion of the pivot.
Then the pendulum satisfies the differential equation

d2θ

dt2
= −Kv(t)2 cos θ(t) sin θ(t) +

√
|K|a(t) cotK δ sin θ(t),

where a(t) = dv/dt is the scalar acceleration. This has equilibria at θ = 0, π.
They are stable when K > 0 and unstable when K < 0.

We analyze the small-amplitude oscillations in the special case when
v(t) = v0 + at.

We assume the following convention for spaces of constant curvature K:
if K > 0,

cosK(s) = cos(s
√
K), sinK(s) = sin(s

√
K), tanK(s) = tan(s

√
K)

and if K < 0, then

cosK(s) = cosh(s
√−K), sinK(s) = sinh(s

√−K),

tanK(s) = tanh(s
√−K).

2. Pendulum Motion for Constant Speed Pivots

Figure 3 below illustrates additional quantities which will be used in the
proof of Theorem A. We let b denote the distance from m to the geodesic
and we let a denote the distance from the pivot T to the point D. Let δ
be the distance from the pivot to the mass, i.e., the length of the rod. We
observe that the geodesic triangle �ADT is a right triangle with right angle
at D. We let α be the angle at A.
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Figure 3. Skew-motion of a pendulum

Proof of Theorem A.

Case I: K > 0. Assume that the pendulum pivot moves with constant speed
along a geodesic on a surface of constant positive curvature. Let δ be the
length of the rigid rod. We assume that δ < πR, where R = 1/

√
K, and take

the motion to be on the sphere x2 + y2 + z2 = R2 in IR3. The angular speed
of the pivot is ω = v/R = v

√
K, and the location of the pivot can be taken

to be R
(

cos(ωt)̂i + sin(ωt)̂j
)
. Letting θ be the angle between the direction

of motion of the pivot and the rigid rod, the possible locations of the mass
are parameterized by

F (t, θ) = R sinK δ
[
sin θ k̂ + cos θ

(
− sin(ωt)̂i + cos(ωt)̂j

)]

+R cosK δ
(

cos(ωt)̂i + sin(ωt)̂j
)
.

For a particular motion of the mass we have θ = θ(t), and the motion of
the mass is σ(t) = F (t, θ(t)), or

σ(t) = R sinK δ
[
sin(θ(t))k̂ + cos(θ(t))

(
− sin(ωt)̂i + cos(ωt)̂j

)]

+R cosK δ
(

cos(ωt)̂i + sin(ωt)̂j
)
.

The acceleration in IR3 is then
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d2σ

dt2
= −

[
dθ

dt

]2

R sinK δ
[
sin(θ(t))k̂ + cos(θ(t))

(
− sin(ωt)̂i + cos(ωt)̂j

)]
+

2
[
dθ

dt

]
ωR sinK δ sin(θ(t))

(
cos(ωt)̂i + sin(ωt)̂j

)
−

ω2R sinK δ cos(θ(t))
(
− sin(ωt)̂i + cos(ωt)̂j

)
−

ω2R cosK δ
(
cos(ωt)̂i + sin(ωt)̂j

)
+

[
d2θ

dt2

]
R sinK δ

[
cos(θ(t))k̂− sin(θ(t))

(
− sin(ωt)̂i + cos(ωt)̂j

)]
.

θ

m

D T

α d/2

a

b

A

a

a2

1

Figure 4. A standard frame

Let {a1, a2} be an oriented, orthonormal frame for the tangent space of
the sphere at the point A (the location of the mass) such that a2 is perpen-
dicular to the rigid rod at A. For a general location of the mass we have
a2 = ∂F

∂θ
/‖∂F

∂θ
‖, which for the mass at location σ(t) becomes

a2(t) = cos(θ(t))k̂− sin(θ(t))
(
− sin(ωt)̂i + cos(ωt)̂j

)
.

If g(, ) denotes the metric on the tangent space of the sphere, then
the component of d2σ/dt2 tangent to the sphere and normal to the rod is

g
(

d2σ
dt2
, a2(t)

)
, which simplifies to

g
(
d2σ

dt2
, a2(t)

)
= R sinK δ

([
d2θ

dt2

]
+ ω2 sin(θ(t)) cos(θ(t))

)
.
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Since the intrinsic force on the mass is applied only along the rigid rod,
g
(

d2σ
dt2
, a2(t)

)
= 0, which yields the differential equation

d2θ

dt2
= −ω2 sin(θ(t)) cos(θ(t)) = − Kv2

2
sin(2θ(t)).

Note that θ = 0, π/2, π, 3π/2 are equilibrium solutions. Making the substi-
tution u = 2θ, the equation becomes

d2u

dt2
= −Kv2 sin u.

This is the equation of a planar pendulum in Euclidean space subject to
a constant gravitational field, which is known to be periodic using energy
considerations. The small-amplitude period is 2π/v

√
K. It has a stable

equilibrium at u = 0 mod 2π, corresponding to θ = 0, π. Similarly, It has an
unstable equilibrium at u = π mod 2π, corresponding to θ = π/2, 3π/2.

Case II: K < 0. For simplicity, we assume the motion takes place in the
hyperbolic plane of curvature K. We use the hyperboloid model in IR3,

x2 + y2 − z2 =
1

K
, z > 0,

which inherits its geometry from the Minkowski inner product

g((a, b, c), (x, y, z)) = ax+ by − cz.

Similar to Case I, set R = 1/
√−K and ω = v/R = v

√−K, and assume

the pivot moves along the geodesic R
(

sinh(ωt)̂i + cosh(ωt)k̂
)
. The circle of

radius δ about the origin of the model is parameterized by

c(θ) = R sinK δ(cos θ î + sin θĵ) +R cosK δ k̂.

Translating this circle to one centered at the pivot by means of the Minkowski
isometry with matrix

A(t) =

⎛
⎜⎝

cosh(ωt) 0 sinh(ωt)
0 1 0

sinh(ωt) 0 cosh(ωt)

⎞
⎟⎠

yields the general position of the mass:
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F (t, θ) = A(t)c(θ) = R sinK δ
[
sin θ ĵ + cos θ

(
sinh(ωt)k̂ + cosh(ωt)̂i

)]

+R cosK δ
(
cosh(ωt)k̂ + sinh(ωt)̂i

)
.

From this point the proof is nearly identical to that of Case I with the sub-
stitution of hyperbolic functions for circular ones in the appropriate places,
the permutation of the basis vectors, and the use of the Minkowski inner
product.

The reversal of the stable and unstable equilibria result from the change
in sign of K. More specifically, consider the substitution u = 2θ + π. This
changes the differential equation to

d2u

dt2
= Kv2 sinu = −|K|v2 sinu,

and the reasoning can proceed as in Case I.

Proof of Theorem B.

By Theorem A, θ satisfies

d2θ

dt2
= −Kv2 sin θ cos θ = −Kv

2

2
sin 2θ.

If K > 0, let u = 2θ. If K < 0, let u = 2θ + π. In both cases the equation
becomes

d2u

dt2
= −|K|v2 sinu,

which is the equation of a planar pendulum of length 1 in Euclidean space
subject to a constant gravitational field of magnitude g = |K|v2. Its stable
and unstable equilibria at u = 0 and u = π correspond to the two stable and
two unstable equilibria of the pendulum on the surface, respectively. The
velocity du/dt at the stable equilibrium of the system required to have the
pendulum mass approach the unstable equilibrium asymptotically satisfies
the energy equation

m

2

[
du

dt

∣∣∣
t=0

]2

= 2m|K|v2,
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i.e., the kinetic energy at t = 0 is equal to the change in potential energy as
t→ ∞. Solving for du/dt yields

du

dt

∣∣∣
t=0

= 2v
√
|K|, or

dθ

dt

∣∣∣
t=0

= v
√
|K|.

This completes the proof of Theorem B.

Pendulum Conservation Law on Surfaces of Constant Curvature.
Under the hypothesis of Theorem A, the following combination of intrinsic
angular speed and position is constant:

2
(
dθ

dt

)2

−Kv2 cos 2θ.

Proof. From Theorem A we have

d2θ

dt2
= −Kv2 sin θ cos θ = −Kv

2

2
sin 2θ.

We consider a change of variables as in the proof of Theorem A. If K > 0,
let u = 2θ. If K < 0, let u = 2θ + π. In both cases the equation becomes

d2u

dt2
= −|K|v2 sinu,

which is the equation of a planar pendulum of length 1 in Euclidean space
subject to a constant gravitational field of magnitude g = |K|v2. The kinetic
energy of this pendulum is (m/2)(du/dt)2. Taking the potential energy to
be zero when u = π/2, the potential energy is −m|K|v2 cos u. Their sum,

m

2

(
du

dt

)2

−m|K|v2 cos u,

is constant. Changing back to θ and simplifying, this becomes

2
(
dθ

dt

)2

−Kv2 cos 2θ.

Proof of Theorem C.

It should now be clear that the solutions of the constant speed pivot
pendulums are symmetric with respect to the stable equilibria on a surface
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of constant curvature. Now we consider the case of the balanced barbell,
such that the center of mass moves with constant speed along a geodesic.
The symmetry of solutions for the pendulum imply that the masses can be
treated independently and that if we do so, the solutions for the motion of
the independent masses will lie at a fixed distance δ = d/2 from the pivot
(which corresponds to the center of mass) and that a geodesic from one mass
to the other will always pass through the pivot. This proves the theorem.

3. Pendulum Motion for Accelerated Pivots

Proof of Theorem D.

Now consider the case of pendulum motion on a surface of curvature K
when the pivot accelerates along a geodesic. Let s(t) denote the arc-length
parameter of the pivot at time t. When K > 0, the equation of motion of
the mass is then (c.f. proof of Theorem A)

σ(t) = R sinK δ
[
sin(θ(t))k̂ + cos(θ(t))

(
− sin(s(t)/R)̂i + cos(s(t)/R)̂j

)]

+R cosK δ
(

cos(s(t)/R)̂i + sin(s(t)/R)̂j
)
,

where R = 1/
√
K.

As before, let {a1, a2} be an oriented orthonormal frame for the tangent
space of the surface at the point A such that a2 is perpendicular to the rigid
rod at the point A. We have

a2(t) = cos(θ(t))k̂− sin(θ(t))
(
− sin(s(t)/R)̂i + cos(s(t)/R)̂j

)
.

Again, the force on the mass acts in the direction of the rod, and so
g
(
d2σ/dt2, a2(t)

)
= 0, which simplifies to

R sinK δ
(
d2θ

dt2
+
v(t)2

R2
sin θ(t) cos θ(t)

)
− a(t) sin θ(t) cosK δ = 0,

where v(t) = ds/dt and a(t) = d2s/dt2 are the speed and scalar acceleration
of the pivot. This can be rewritten as

d2θ

dt2
= −Kv(t)2 cos θ(t) sin θ(t) +

√
Ka(t) cotK δ sin θ(t),
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where cotK δ = cosK δ/ sinK δ. When K < 0 the computation is similar, and
one gets

d2θ

dt2
= −Kv(t)2 cos θ(t) sin θ(t) +

√−Ka(t) cotK δ sin θ(t),

and so the general formula is

d2θ

dt2
= −Kv(t)2 cos θ(t) sin θ(t) +

√
|K|a(t) cotK δ sin θ(t).

The equilibria at θ = 0, π are still present, and by linearizing one easily
sees that they are still stable when K > 0 and unstable when K < 0.
The other equilibria, however, are gone because the other angles for which
d2θ/dt2 = 0 now depend on t. This proves Theorem D.

The formula above should be compared with the formula in Theorem A.
Note that if a(t) = g and K → 0, the equation reduces to the standard
pendulum equation for constant acceleration,

d2ψ

dt2
+
g

δ
sin(ψ) = 0,

where ψ = θ − π.
For additional insight, assume that s(t) = v0t+at2/2, where v0 and a are

constant. We have

d2θ

dt2
=

(
−K(v0 + at)2 cos θ(t) +

√
|K|a cotK δ

)
sin θ(t).

When K > 0, linearizing near θ = 0 yields

d2θ

dt2
≈

(
−K(v0 + at)2 +

√
Ka cotK δ

)
θ(t).

Linearizing near θ = π and replacing θ − π by ψ yields

d2ψ

dt2
≈

(
−K(v0 + at)2 −

√
Ka cotK δ

)
ψ(t).

These are similar to a pendulum in Euclidean space subject to an increas-
ingly strong gravitational force. One surmises that the resulting oscillations
have decreasing amplitude and period, something borne out by computer
experiments.
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When K < 0, we analyze the situation more heuristically. We have

d2θ

dt2
=

(
−K(v0 + at)2 cos θ(t) +

√−Ka cotK δ
)

sin θ(t).

Let θ0(t) ∈ [0, π] satisfy −K(v0 + at)2 cos θ0(t) +
√−Ka cotK δ = 0, which is

possible for all sufficiently large t. We see that θ0(t) is smooth and approaches
π/2 monotonically from above as t → ∞. Assume that θ(t) is close to θ0(t)
and set ψ(t) = θ(t)−θ0(t). Assuming t is large, we make the approximations
sin θ0(t) ≈ 1 and θ′′0(t) ≈ 0. With these approximations, linearizing in ψ
yields

d2ψ

dt2
≈ K(v0 + at)2ψ.

This is similar to a pendulum in Euclidean space subject to an increasingly
strong gravitational force. One surmises that the resulting oscillations have
decreasing amplitude and period, and that the center of the oscillations tend
toward π/2 from above. This has also been observed empirically.
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