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ues of matrices seems to be a paper by Carmichael [3] in 1921. Other examples include
[1, 2, 6, 7]. Such work typically considers systems of the form

k∑
j=1

λ j Ai j xi = 0, (8)

where each Ai j is an mi × ni matrix and xi is an ni -element vector. We seek k-tuples
(λ j )

k
j=1 such that (8) can be solved with each xi nonzero. Much of this work is at quite

a general level and there seems to be little explicit discussion of the interesting special
case considered here. We have focused on the properties of this special case, which we
believe deserves to be better known.
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I would like to call attention to a beautiful theorem about volume. The only place I
have found it is in Courant’s calculus text [3, p. 295], [4, p. 451]. Given that this book
is a classic and that the result is both simple and elegant, it is surprising that it has not
appeared in every calculus text since.

The result generalizes both Cavalieri’s Principle and the Theorem of Pappus as a
means for computing the volume swept out by a moving planar region. Somewhat
informally, let St , a ≤ t ≤ b, be a planar region of area A(t) moving in space. Let
n(t) be a continuous unit vector normal to the plane of the region, and let v(t) be the
velocity of the centroid of St . Then the signed (or oriented) volume swept out by St is

V =
∫ b

a
A(t) n(t) · v(t) dt. (1)

Intuitively, the volume is signed in the following sense. The vector n(t) indicates an
orientation or forward direction (see FIGURE 1). Volume swept out in this direction is
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Figure 1 The velocity v and forward direction n of a moving planar region

taken to be positive; volume swept out in the opposite (or backward) direction is taken
to be negative. This is handled in the integrand of (1) by the sign of n · v. The net signed
volume swept out is, in general, the result of both forward and backward motions. The
formula also allows for multiplicities: a point in the path of the moving region may be
covered more than once and in both forward and backward directions, in which case
the volume of some neighborhood of the point is counted in (1) accordingly.

A recent article by England and Miller [5] gives a variation of (1) that is both more
general, in that it allows the reference curve � to be one other than the path of the
centroid, and more specialized, in that it requires � ′(t) to be perpendicular to the
plane of St . The result is a nice formula for the signed volume swept out in terms of
the geometry of � and its relationship to the centroid of St . A proof of their result is
given below (Theorem 2) as an application of (1).

The familiar Theorem of Pappus and Cavalieri’s Principle are easily seen to be
special cases of (1).

THEOREM OF PAPPUS. Suppose S is a bounded planar region of area A that is
revolved about a line � lying in the plane of S. If S lies in one of the half-planes
bounded by �, then the volume of the solid of revolution swept out by S is 2πr A, where
r is the radius of the circle swept out by the centroid of S.

S

r

(a) (b) (c)

Figure 2 Theorem of Pappus

FIGURE 2a shows a region S and its centroid. FIGURE 2b shows S rotating about
a line �, resulting in the solid in FIGURE 2c. Since the area is constant and n can be
taken to be v/ ‖v‖, the integral in (1) reduces to A times the distance moved by the
centroid. Since every point of S moves in the forward direction, the signed volume is
all positive.

The volume formula in the Theorem of Pappus is valid, in fact, even when � passes
through S, as in FIGURE 3a, as long as it is interpreted as signed volume. The line �

divides S along a chord into two subregions. As S rotates about this chord, the two
subregions move in opposite directions, one moving forward and the other backwards.
Each subregion generates a solid, shown in FIGURES 3c and 3d. Then (1) implies
that 2πr A is the difference of the volumes of these two solids. This illustrates that a
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Figure 3 Generalized Theorem of Pappus

moving region can simultaneously generate both positive and negative signed volumes,
an observation that is key to interpreting the integrand of (1).

Cavalieri’s Principle states that if two solids have equal cross-sectional areas when
cut by any plane parallel to a given plane, then the solids have the same volume
(FIGURE 4). This is true even if the cross sections of one are stacked up straight and
those of the other are skewed. What is important is not the exact path of the cross-
sectional centroid, but rather the component of its motion perpendicular to the family
of planes, which is computed by the dot product in (1). If the Theorem of Pappus is
about rotations, Cavalieri’s Principle, in contrast, is about translations. Since the cross
sections are parallel, two nearby cross sections are (approximately) translates of each
other.

Figure 4 Cavalieri’s Principle

Courant states (1) without proof. Instead, he states and proves its analog for the
signed area swept out by a line segment moving in R

2,

A =
∫ b

a
L(t) n(t) · v(t) dt, (2)

where L is the length of the segment, n is a forward-pointing unit normal vector, and v
is the velocity of the midpoint, as in FIGURE 5. He goes on to use this to explain how
a planimeter works (for more about planimeters, see [6, 7, 8]).

One can think of the integrand of (1) as the infinitesimal signed volume swept out
due to an infinitesimal motion of the region (with a similar interpretation for the inte-

n

v

Figure 5 Moving segment sweeping out area in R
2
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grand of (2)). The simplicity of this expression hides the fact that even an infinitesimal
motion can result in a combination of both positive and negative volumes. This hap-
pens, for example, for the region S in FIGURE 3ab as it rotates about the line �. In
general it happens when the region St rotates slightly to St+dt about one of its chords,
�t , as in FIGURE 6. (For the purpose of this informal discussion we take a chord of
St to be a line in the plane of St such that there are points of St on both sides of the
line. This agrees with the usual notion of chord when the region is connected.) Part of
the content of (1) and its proof is that only the displacement v dt = dx = T ds of the
centroid relative to the direction of the normal n matters.

St

t

S t + dt

Figure 6 Infinitesimal rotation about a chord

I find the result in R
2 less intriguing—the formula is almost obvious due to the

symmetry of a line segment about its midpoint. The “symmetry” of a planar region
about its centroid is more subtle. For example, a chord through the centroid generally
doesn’t bisect the area of the region. (A chord through the centroid of a triangle parallel
to one of the sides divides the area in the ratio 4:5.) It follows from (1), however,
that if the region rotates about such a chord, the signed volume swept out is zero.
Consequently, (1) gives some insight into the geometric significance of the centroid
that complements the physical center-of-mass interpretation in many calculus texts.

Definitions and proof To prove (1), we first make the notion of signed volume
more precise. Suppose U ⊂ R

3 is a bounded region, F : U → R
3 is C1, and F(U)

is bounded. We take the signed volume covered by F to be the value of
∫∫∫

U JF dV ,
where JF = det DF is the Jacobian determinant. It’s clear that if F is one-to-one on
U+ = {x ∈ U : JF(x) > 0} and on U− = {x ∈ U : JF(x) < 0}, then the signed vol-
ume covered by F is the volume of F(U+) minus the volume of F(U−). (By Sard’s
Theorem [11], the image of U 0 = {x ∈ U : JF(x) = 0} has volume 0 even if the vol-
ume of U 0 is positive.) If F is finite-to-one on U+ ∪ U−, the signed volume takes into
account the multiplicity of the coverings. The signed volume swept out by the moving
planar region in Theorem 1 is to be taken in this sense, as will be clear in the proof.

THEOREM 1. Let Pt , a ≤ t ≤ b, be a family of planes. For each t suppose St is a
region in Pt such that St varies continuously with t . Let A(t) be the area of St , let c(t)
be the centroid of St , and let n(t) be a unit normal to Pt . Assume c and n are C1, and
that ∪t St is bounded. Then the signed volume swept out by St is given by (1) (repeated
here for emphasis), where v(t) = c′(t).

V =
∫ b

a
A(t) n(t) · v(t) dt. (1)

The proof is similar to that given by England & Miller [5], but somewhat simpler.
Note that much of the notation introduced in the proof is used in the remainder of the
paper.

Proof. Let e1(t), e2(t), and e3(t) form a C1, positively-oriented, orthonormal frame
along c with e1(t) = n(t). (To get this one could, for example, apply the Gram-Schmidt
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process to n(t) and i to obtain e1(t) and e2(t), assuming n(t) 	= i for all t , and then let
e3(t) = e1(t) × e2(t).)

Define F : [a, b] × R
2 → R

3 by

F(t, x, y) = c(t) + xe2(t) + ye3(t).

Note that F(t, 0, 0) = c(t), that is, F maps the t-axis to the path of the centroid. For
t = t0 fixed, note that {(t0, x, y) : (x, y) ∈ R

2} is the plane in R
3 = R × R

2 perpendic-
ular to the t-axis at t0. Similarly, {F(t0, x, y) : (x, y) ∈ R

2} is the plane in R
3 passing

through c(t0) perpendicular to n(t0), which is the plane Pt0 containing St0 .
For each t , let S̃t = {(t, x, y) : F(t, x, y) ∈ St}. Since e2(t) and e3(t) are orthonor-

mal, then S̃t and St are congruent. Furthermore, the centroid of S̃t is (t, 0, 0). Thus the
map F achieves a straightening out of the moving region St into the moving region S̃t

that stays perpendicular to a fixed direction (the t-axis), and so that the centroid of S̃t

moves in a straight line with constant unit speed. The moving region S̃t sweeps out a
bounded region �̃ in R × R

2.
The signed volume swept out by St , that is, the signed volume covered by F |�̃, is

V =
∫∫∫

�̃

JF dt dx dy =
∫∫∫

�̃

∂ F

∂ t
·
(

∂ F

∂x
× ∂ F

∂y

)
dt dx dy.

We have

∂ F

∂ t
= v(t) + xe′

2(t) + ye′
3(t),

∂ F

∂x
= e2(t), and

∂ F

∂y
= e3(t).

Using e2(t) × e3(t) = e1(t) = n(t), we have

JF = ∂ F

∂ t
·
(

∂ F

∂x
× ∂ F

∂y

)
= v(t) · n(t) + xe′

2(t) · n(t) + ye′
3(t) · n(t). (3)

Integrating over �̃, we get

V =
∫∫∫

�̃

JF dt dx dy =
∫ b

a

[∫∫
S̃t

JF dx dy

]
dt

=
∫ b

a

[
v(t) · n(t)

∫∫
S̃t

dx dy

+ e′
2(t) · n(t)

∫∫
S̃t

x dx dy + e′
3(t) · n(t)

∫∫
S̃t

y dx dy

]
dt.

Now,
∫∫

S̃t
dx dy is the area of S̃t , which is A(t). Furthermore,

∫∫
S̃t

x dx dy and∫∫
S̃t

y dx dy are both zero, since the centroid of S̃t is (t, 0, 0). Thus the integral

reduces to
∫ b

a A(t) v(t) · n(t) dt , which is the desired result.

As an example, consider the undulating torus swept out by a moving disk of varying
radius, pictured in FIGURE 7ab. At time t ∈ [0, 2π] the center of the disk is c(t) =
4u(t), where u(t) = cos t i + sin t j. The radius of the disk is r(t) = 1 + 1

2 cos(3t),
and the unit normal to the disk is n1(t) = c′(t)/4. The volume of the torus is then

V1 =
∫ 2π

0
A(t)v(t) · n1(t) dt =

∫ 2π

0
π

(
2 + cos(3t)

)2
dt = 9π2 ≈ 88.8.



294 MATHEMATICS MAGAZINE

(a) (b) (c) (d)

Figure 7 Moving disks sweeping out volume.

We now perturb the disk so that it wobbles as it sweeps out area, pictured in FIG-
URE 7cd. Let N2(t) = n1(t) + 1

2 sin(3t) k + 1
3 cos(2t) u(t) (note that this simply adds

to n1 something in its orthogonal complement) and take n2(t) = N2(t)/ ‖N2(t)‖ as the
new unit normal. The new volume is

V2 =
∫ 2π

0
A(t)v(t) · n2(t) dt =

∫ 2π

0

6
√

2π
(
2 + cos(3t)

)2

√
85 + 4 cos(4t) − 9 cos(6t)

dt ≈ 82.2,

which is slightly less than the original, as one might expect.

Moving forward One gets volume, as opposed to signed volume, when JF ≥ 0 on
�̃. From the proof, the interpretation of JF > 0 is that every point of St moves in the
forward direction. In many specific examples this is easy to see by inspection, but it’s
good to know conditions that imply it. Especially useful conditions are ones that can
be applied directly to St , as opposed to S̃t or F .

Note, from (3), that JF is linear in x and y. Consequently, if JF is zero at some
interior point of S̃t , but not identically zero on S̃t , then it is zero along a whole chord C̃
of S̃t and takes opposite signs on opposite sides of the chord. This is the infinitesimal
version of the fact that if St1 and St2 intersect, they do so along a common chord. To
see this, let C = F(C̃) be the corresponding chord of St . Points of St corresponding to
points of S̃t for which JF > 0 are moving forward. These points are all on one side of
C . Points of St on the opposite side of C are moving backwards. It follows that C is the
chord of intersection of St and St+dt in FIGURE 6, and F fails to be one-to-one on any
neighborhood of any point of C̃ . Thus, to conclude that (1) computes volume when the
St are connected, it suffices to assume that St1 and St2 are disjoint when t1 	= t2, with
the possible exception of Sa and Sb, which might be identical. In the standard use of
the Theorem of Pappus this is handled by the assumption that the planar region S lies
in one of the half-planes of the line of rotation.

The following proposition gives a precise condition on St for JF > 0 on S̃t .

PROPOSITION. JF > 0 on S̃t if and only if
(
x − c(t)

) · n′(t) < v(t) · n(t) for all
x ∈ St .

Proof. The proof involves rewriting the expression for JF in (3). Since e2 and e3

are perpendicular to n, we have

0 = d

dt

((
xe2(t) + ye3(t)

) · n(t)
)

= xe′
2(t) · n(t) + ye′

3(t) · n(t) + (
xe2(t) + ye3(t)

) · n′(t).

Now c(t), e2(t) and e3(t) determine a Euclidean coordinate system on Pt in which
(x, y) are the coordinates of x = c(t) + xe2(t) + ye3(t). By substitution into (3), JF
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can be written as

JF = v(t) · n(t) − (
xe2(t) + ye3(t)

) · n′(t) = v(t) · n(t) − (
x − c(t)

) · n′(t)

for x ∈ St , from which the proposition follows.

A few comments will reveal the geometric significance of the proposition. The in-
equality is a linear condition on points x in the plane Pt of St . If it holds for all x ∈ St ,
then it holds when x is the centroid c(t). In this case we get v(t) · n(t) > 0, which
simply says that the centroid must be moving forward.

The cases when n′(t) = 0 and n′(t) 	= 0 are infinitesimal versions of the hypotheses
of Cavalieri’s Principle and the Theorem of Pappus. To see this, note that since n(t)
is the unit normal to Pt , the vector n′(t) is a measure of the rotation of the family of
planes. If n′(t) = 0, then having the centroid move forward is sufficient for every point
in Pt to do the same. This agrees with intuition—in this case the planes Pt and Pt+dt

are parallel (at least to first order). On the other hand, if n′(t) 	= 0, then the planes Pt

and Pt+dt are not parallel, as shown in FIGURE 6. The inequality in the proposition
defines a half-plane that contains the centroid. The boundary of the half plane is the
line �t of intersection of Pt and Pt+dt . (The details of this are not difficult, and are left
to the interested reader.) In order for the region St to be moving forward, it must lie in
this half plane.

The interested reader may also verify that the inequality in the proposition is satis-
fied by the wobbling disk example, and so the signed volume computed is the actual
volume of the solid swept out.

A variation The hypotheses used by England and Miller [5] are somewhat different
than those in Theorem 1. Instead of following the centroid of the moving region, they
follow another reference curve � that is assumed to be perpendicular to the plane of
the moving region. Their integral formula for volume involves the geometry of � and
the displacement from � to the centroid.

THEOREM 2. (ENGLAND & MILLER [5]) Suppose that � : [0, �] → R
3 is a C2

curve parameterized by arc length s. Let Ps be the plane containing �(s) that is per-
pendicular to � ′(s). Let Ss be a region in Ps that varies continuously with s. Let N(s)
be the principal normal vector of � and let r(s) = (

c(s) − �(s)
) · N(s), where c(s) is

the centroid of Ss. Then the signed volume swept out by Ss is

V =
∫ �

0
A(s)

(
1 − κ(s)r(s)

)
ds.

Note that r(s) is the component of the vector from �(s) to the centroid in the direc-
tion of the principal normal.

To prove this we first generalize Theorem 1 and then specialize to the situation
of Theorem 2. Under the hypotheses and notation of Theorem 1, suppose that � :
[a, b] → R

3 is a C1 curve such that �(t) ∈ Pt for all t . Here we do not assume that
� is parameterized by arc-length or that Pt is perpendicular to � ′(t). From Theorem 1
the signed volume swept out is

V =
∫ b

a
A(t)

(
� ′(t) + (

c′(t) − � ′(t)
)) · n(t) dt.

Since c(t) and �(t) are both in Pt , then c(t) − �(t) is perpendicular to n(t) and we
have

0 = d

dt

((
c(t) − �(t)

) · n(t)
)

= (
c′(t) − � ′(t)

) · n(t) + (
c(t) − �(t)

) · n′(t).
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(This is similar to the first step in the proof of the proposition.) Thus

V =
∫ b

a
A(t)

(
� ′(t) · n(t) + (

�(t) − c(t)
) · n′(t)

)
dt. (4)

Now assume the hypotheses of Theorem 2. Since Ps is perpendicular to � ′(s), we
may take n(s) = � ′(s) = T(s), the unit tangent vector of �. The second factor in the
integrand of (4) becomes

T(s) · T(s) + (
�(s) − c(s)

) · T′(s) = 1 − (
c(s) − �(s)

) · κ(s)N(s) = 1 − κ(s)r(s),

which proves Theorem 2.

The integrand of (4) has a nice interpretation. It can be written as

dV = A(t)� ′(t) · n(t) dt + A(t)
(
�(t) − c(t)

) · n′(t) dt. (5)

Suppose that the infinitesimal motion of St is purely translational. Then n′(t) = 0 and
� ′(t) 	= 0, and the infinitesimal volume swept out is given by the first term of (5).
On the other hand, suppose that St is infinitesimally rotating about some line in Pt that
passes through �(t). In this case n′(t) 	= 0 and � ′(t) = 0, and the infinitesimal volume
swept out is given by the second term of (5). Thus (5) is the decomposition of dV into
purely translational and rotational parts from the perspective of the reference curve �.
The distinguishing property of the centroid is that it is the unique choice of �(t) for
which only the translational part matters in (5).

Higher dimensions and other geometries Interested readers may enjoy generaliz-
ing Theorems 1 and 2 to a moving, codimension-one, flat region sweeping out volume
in R

n . The generalizations to spherical and hyperbolic geometries are less obvious,
however. For a geodesic segment sweeping out area in S2 or H 2, the analog of (2) is

A =
∫ b

a

C
(
L(t)/2

)
π

n(t) · v(t) dt, (6)

where L , n, and v are the same as in (2) and C(r) is the circumference of a circle
of intrinsic radius r [6]. For the unit sphere, in which the Gaussian curvature is 1, we
have C(r) = 2π sin r , and for the hyperbolic plane with curvature −1 we have C(r) =
2π sinh r , but (6) is valid for all constant curvatures. The analogs of (1) and (6) in Sn

and H n for n ≥ 3, if they have been worked out, are necessarily more complicated
because the notion of centroid (and more generally, center of mass) is less clear in
these spaces. The definition and equivalence of the various formulations of centroid
and center of mass in R

n depend on the affine structure of R
n , which is absent in

Sn and H n . The first notion of center of mass for regions in symmetric spaces was
developed by Cartan [2], and has been generalized to other settings (see Berger [1];
Galperin [9] gives an extrinsic definition of center of mass in Sn and H n). The notion
is more subtle than in R

n and, in particular, its dynamical properties do not extend (for
example, the center of mass of a freely-moving rigid body does not necessarily follow
a geodesic), and there are competing notions for a substitute concept in this setting
[10].
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Dedicated to our friend John Selfridge

Math trivia buffs recognize 1729 as the number of the taxi that Hardy took to visit
Ramanujan in the hospital. When Hardy complained that it seemed like a typical run
of the mill number, Ramanujan countered that 1729 is actually a “very interesting
number,” because “it is the smallest number expressible as the sum of two cubes in
two different ways” (93 + 103 and 13 + 123) [5, pp. 12]. Ramanujan could have really
surprised his friend by saying something like this: “Besides, Hardy, twice its square
is the first number which can be written as the sum of three fourth powers in four
different ways.”

It turns out that 2 × 17292 is the start of an infinite sequence of numbers with the
following remarkable property: If R(n) denotes the number of ways that n can be
written as the sum of three fourth powers, then R(n) doubles every time we move on
to the next number in the list. Consequently, there exist integers with an arbitrarily
large number of representations as sums of three fourth powers.

Our investigation utilizes a simple identity:

x4 + y4 + (x + y)4 = 2(x2 + xy + y2)2. (1)

This equation is easily established by straightforward algebraic manipulation. Dickson
referred to (1) as “Proth’s identity.” First published in 1878 [3, p. 657, footnote 227],
it is an easy consequence of Candido’s identity

(x2 + y2 + (x + y)2)2 = 2(x4 + y4 + (x + y)4), (2)


