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Homogeneous Complexr Monge-Ampere
Equations and Algebraic Embeddings of
Parabolic Manifolds

ROBERT L. FOOTE

ABSTRACT. Let M™ be a Stein manifold, and let 7 : M —
[0,R?), 0 < R < oo, be a strictly plurisubharmonic exhaus-
tion. The pair (M, ) is said to be strictly parabolic at infinity
if u = log T satisfies the Monge-Ampére equation (BOu)™ = 0
outside some compact set K. Additionally, (M,7) is of Rein-
hardt type if T can be written locally as a Reinhardt function
on M — K. The set M — K admits a Monge-Ampere foliation
in a well-known way. With an assumption on the holomor-
phic twist of this foliation when R = oo we prove a curva-
ture estimate, which, via a theorem due to Demailly, implies
that M embeds algebraically into C2"*!. When R < oo and
K = 771(0) we prove, under a weaker regularity assumption
than usual, that M is biholomorphic to the ball in C" of radius
R.

1. Introduction.

Outline. Let M be a connected, complex manifold of dimension n, and let
T: M — [0,R?), 0 < R < o0, be a strictly plurisubharmonic (spsh) exhaustion.
Stoll [S2] defined a strictly parabolic manifold to be one in which the function
u = logT satisfies the homogeneous Monge-Ampere equation (B0u)™ = 0 on
M —771(0). He proved that if 7 is C*°, the only example is the R-ball in cr
with the standard exhaustion 7o(z) = |2|?. Burns [B1] gave an alternate proof
of this and, using a curvature estimate, drew the same conclusion when 7 is i
and R = co. It is unknown if the conclusion holds when 7 is C® and R < oo.

In this paper we follow a generalization of the notion of strictly parabolic
manifold due to Burns [B2], [F2]. Let M, 7, and u be as above with R = o0,

except that (86u)" = 0 is required to hold only outside some compact subset
of M. We will say that M, together with 7, is strictly parabolic at infinity.
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Burns conjectured that a Stein manifold M is biholomorphic to an algebraic
submanifold of CV if and only if M admits an exhaustion 7 that makes M
strictly parabolic at infinity. We prove a special case of this conjecture.

It is well-known that the local conditions imposed on 7 and w, namely

(1.1) 7 is spsh, u=1logr, and (00u)" =0,

give rise to a foliation by Riemann surfaces, known as the Monge-Ampére folia-
tion. Section 2 contains a review and further study of the local geometry of this
foliation.

In Section 3 we introduce an additional local condition on 7. We say that
is locally Reinhardt if local holomorphic coordinates can be chosen so that 7 is
a Reinhardt function. In a related coordinate system, it follows that 7 satisfies
the real analogue of (1.1). There is a real Monge-Ampere foliation, and some
results of the author [F'3] can be used. As an application, we prove a version of
Stoll’s theorem that is valid when 7 is C® and R < oc.

The main results are in Section 4. In Theorem 4.4 we assume that M is
strictly parabolic at infinity and satisfies a curvature estimate. Using a theorem
due to Demailly [D], we prove that M embeds algebraically into C2"*!, Theorem
4.5 is a special case of Burns’ conjecture. Given M that is strictly parabolic at
infinity, we assume the Reinhardt condition and an assumption about the twist of
the foliation. We show that the curvature estimate of Theorem 4.4 is satisfied and
conclude that M admits an algebraic embedding. We give an example showing
that the conditions in (1.1) are, by themselves, insufficient to prove the curvature
estimate—some condition governing the twist of the foliation is necessary.

Portions of this paper originally appeared as parts of my doctoral disserta-
tion [F1], which was written under the direction of Daniel M. Burns. I would
like to take this opportunity to thank him for the many conversations we had,
both mathematical and non-mathematical, while I was his student.

Notational Conventions. The complexified tangent bundle of M will be
denoted by T*M. If X € TCM, then X0 and X%! will denote its components
in TY9M and T%1 M.

Let .f : M — R be C%2. The complex Hessian of f will be denoted by
Hc(f) (= X 0%f/02%02° dz* ® dzP in local coordinates). Since T is spsh, He(T)
determines a Hermitian metric on T*°M : (Z,W) — Hc(7)(Z, W), which will
be called the T-metric. Its Kahler form is £ 987 = dd°r, where d¢ = 1(0-0).
Note that 807(Z, W) = He(1)(Z,W) for Z, W € THO M, but that 90T(X,Y) =
He(7)(X,Y) — He(7)(Y, X) for general X, Y € TC M. The volume form is given
by dV = (dd°r)".

A typical level set of 7 (hence of u = log7) will be denoted by ¥. Let
TS = TYMnkerdr, TS = TWO%, HY = TENJTS, and HEY =
HY®C =TT,
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An additional notational convention concerning indices is made in Re-
mark 2.1.

2. Local Geometry of the Monge-Ampére Foliation.
Let M be a complex manifold of dimension n. Let u: M — R be a solution
of the homogeneous Monge-Ampeére equation and side conditions

(2.1) (aéu)" =0, u =logr, and 7 is spsh.

We assume 7 and u are C5 so that the curvatures of the 7-metric will be C1.

The local geometric consequences of (2.1) have been widely studied, e.g.,
[BB], [BK], [B1-2], [F1-3], [Fr], [L1-2], [P1-4], [PW1-2], [S1-3], [W1-4]. In
particular, we have the following (see [BK], [S2], [B1], [BB]):

(1) rank(80u) = rank He (u) = n—1.

(2) M is foliated by complex curves such that u is harmonic on the leaves. A
vector Z € THOM is tangent to a leaf if and only if He(u)(Z,-) = 0.

(8) The level sets of u (and 7) are non-degenerate, strictly pseudoconvex, and
transverse to the leaves.

(4) Hc(u) is positive definite on the level sets and u is plurisubharmonic (psh).

Remark 2.1. We will adopt the following convention for computations:
the indices 1,...,n will be used with 1 often reserved for the leaf direction. The
indices a, 3, 7, ... will range over 1,...,n; the indices i, 4, k, ... will range over
2,...,n.

Definition 2.2 (cf. [S2], [B1]). Let £ be the (1,0)-vector field that is
He(r)-dual to Or, i.e., € satisfies 8r(Z) = He(r)(€,Z) = 907(¢,Z) for all
ZeT™0.

For a proof of the next proposition, see [S2], [B1], and [W1].

Proposition 2.3 (Properties of £).

(1) & is orthogonal to T*O%, where ¥ is a level set of u and 7.

(2) € is tangent to the foliation.

(3) He(r)(&,€) =7, ér =7, and Eu = 1.

(4) [€,€] =0, so € is holomorphic along the leaves of the foliation.

(5) & is completely determined as a (1,0)-vector by (1) and (2) or by (2) and
(3).

(6) & is holomorphic if and only if the foliation is holomorphic.
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Examples 2.4 (Also see Remark 2.7.).1

(1) (Standard Example [S2], [B1])

M=B%,={2eC":|z] <R},0< R < o0,
M = M —{0},

To(2) = |2|*.
The leaves are the complex lines through 0, and £ is the complex Euler field
S 2%0/0z%.

M= (C),
M=M-{z:|2% =1, some a},
1/2
u(z) = log(2) = (L (log|=))?)""”.
Then & = 23 2%1og|2%|8/82z*. When n = 2, the leaves are the complex

curves contained in the hypersurfaces of the form {(z%,22) : |2!|" = |2%[*}.
This example is a special case of (4) after a change of coordinates. (See
[B2].)

M={zeC Y |z2]2 =1},

M=M-{z:|z| =1},

u(z) = log7(z) = cosh™!(]2|?).
The image of C — C"*t1, p — (coshp, isinhp,0,...,0) = (2%,2%,0,...,0), is
a leaf, and along this leaf ¢ = —i2%(8/02!) +i2'(0/82%).

(4) Let U C R™ be open. Let u be a solution of the real Monge- Ampere equation

rank H(u) = n—1, where H(u) = ¥(8%u/02%02")dz* ® dz® is the real
Hessian of u. Assume that e®(*) is strictly convex. Let M = U x R" with
coordinates (z,y), z = x + 1y, and define u : M — R by u(z) = u(z). Since
02u/02297° = 1 8%u/01*0xP, the function u(z) satisfies (80u)™ = 0. The
strict convexity of 7(z) = €*(®) implies that 7(z) = €*(*) is spsh. If 6%
denotes the vector field associated with the real Monge-Ampere foliation on
U, then £ = ;—u —iJ a%' The leaves of the real foliation are straight lines

along which % is parallel. It follows that £ is parallel along the leaves of
the complex foliation. If £ is a real leaf, the complex leaf containing it is
the unique complex line containing £. (See [F3].) The exhaustions on tube
domains studied by Patrizio [P3] are of this form. In Section 3 we turn
our attention to solutions of (2.1) that can be written in this form locally.

not

1 Note: In later sections M will be an open subset of a larger manifold ]\~J, and so this
ation is used in these examples.
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This can be done in (1) and (2), but not in (3). (In (1) and (2) locally set
¢* =log2“. In (1), if some 2 = 0, first make a unitary rotation to a point
where all z® # 0. For (3), see Remark 3.3.)

(5) Let M c CV be algebraic, and suppose the projection « : C¥ — C" is
generic when restricted to M. Let 7 = 7gom, where 79 is as in (1). Let
M = M—({0}U{(887)* = 0}). On M, = is a local biholomorphism.
Thus, after a local change of coordinates, this can also be put into the form
of (4). (See [B2].)

From Proposition 2.3(3) we have that du(Re€) = 1(Qu+0du)(£+¢) = 1,
and so we denote Re& by 3—‘1. The vector fields % and J % are tangent to the
foliation. Since du(J%) = —Im(fu) =0, % is orthogonal to the level sets, and

the integral curves of J a% are the curves of intersection of the level sets and the
leaves of the foliation.

Definition 2.5. Let S = 0¢ + OC.

Since ¢ is a section of TVOM, 9 is a (0,1)-form with coefficients in T1OM.
We will think of S as a vector bundle map T*M — T¢M. If Z is a (1,0)-vector
field on M, then SZ = [Z,£]>!. Note that S “switches types,” i.e., S maps
TYWOM — TO'M and TO'M — T1OM. Also S is real, i.e., S maps TM — TM.
Since S = 0 if and only if £ is holomorphic, S measures the holomorphic “twist”
of the foliation. The tensor (Z,W) — Hc(7)(Z,SW) is the twist tensor of
Bedford and Burns ([BB], [B1]).

Proposition 2.6 (Properties of S).
(1) S¢=8E=5L =SJZ =0.
(2) S takes its values in HCY.

(3) He(7)(Z,8W) = He(r)(W,8Z) for all Z, W € T*M. It follows that
S : HY, — HY is symmetric with respect to the associated Riemannian
metric, and thus has 2(n — 1) real eigenvalues.

(4) JS =-8J.
(5) If SX = AX, then S(JX) = —AJX.

Proof.
(1) This follows from Proposition 2.3(4).
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(2) Let Z be a (1,0)-vector field on M. Then by Proposition 2.3(2,3) we have
0u(SZ) = 0u (06(2)) = bu(]2,€))
= —00u(Z,€) + Z0u(€) — £6u(Z) = 0.

Thus SZ € T™'%.

(3) It suffices to show this when Z and W are (1,0)-vector fields on M. The
Jacobi identity implies that S[W,Z] = [SW, Z]° 4 [W,SZ]%!. From part
(2) we have

Hc(r)(2,5W) — He(T)(W,52)
= 007(Z,SW) — ddr(W,SZ)
= ZOr(SW) — (SW)dr(Z) - 87([2,SW]) - Wdr(SZ)

+(82)dr(W) + 0r(W,SZ2))
= 0r(S[W,Z]) = 0.
(4) Since S “switches types,” if Z € TV"OM, then SJZ =iSZ = —JSZ.
(6) Suppose SX = AX. Then SJX = —JS§X = —\JX. m]

As a consequence of this proposition, we will usually think of S as a map
HCY - HE3. Although the eigenvectors of S are necessarily real (for non-zero
eigenvalues), note that if X € HY is an eigenvector for /S with eigenvalue A,
then any complex linear combination of X and JX is an eigenvector of §? with
eigenvalue A2,

Remark 2.7. The eigenvalues of S in Examples 2.4(1-4) can be shown to
be as follows.

(1) In the standard example the eigenvalues vanish identically since £ is holo-
morphic.

(2) The eigenvalues are all of the form A = +1i,

(3) The eigenvalues are all of the form A = +.

(4) The eigenvalues of S are *Ak, 2 < k < n, where the \; are the eigenvalues
of a tensor S’ that measures the twist of the real foliation. See [F3] and
Section 3.

Let V be the connection associated with the metric He (7).

Proposition 2.8.

(1) If Z € TVYOM, then Vz€ = SZ and V3£ = Z. If X € T°M, then Vx% =
X +5X).

(2) If Z € TV°M, then R(£,€)Z = R(Z,£)¢ = —S2Z.

(3) 2Ric(§,€) = —trS* = —||S||? = —2/|5¢||2.
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Proof.

(1) The first statement is true by the definitions of S and V. For the second,
let W be a holomorphic vector field. Applying Z to He(7)(€,W) = Wr we
obtain

He(r) (Vz€6,W) = ZWr =067 (Z,W) = He(r) (Z,W).

The third statement follows from the first two by writing X = X1.0 + X0
and % = (£ +&). The special case Ve€ = € appears in [S2], [B1], and
[W1].

(2) The first equality is a standard symmetry of the curvature tensor for a
Kahler metric. For the other, let Z be a holomorphic vector field and use
part (1) to obtain

R(Z,6) € = Vz Vet~ VeVzE — Vg gt

=0-0-Vsz¢ = -5%Z.

(3) By definition, Ric(,€) = tr(R(£,€) : T'°M — TYOM). Thus by (2),
Ric(£,£) = —tr(5?|ro M) = — 332, where £y, ..., %\, are the eigenval-
ues of S. (See Proposition 2.6(5) a.d the discussion following it.) By tr§2
we mean

tr($?: TCM — T°M) = tr (52|TM) =2y,

which accounts for the factor of 2 in the first equality. The second equality
follows from the symmetry of S (Proposition 2.6(3)). The final equality
follows from § = 8¢+ € and the fact that 0¢ and O€ are orthogonal in
A'M®TCM. For other proofs of Ric(¢,€) = —||F¢||? see [S2] and [W1).
For a generalization, see [PW2]. O

3. The Reinhardt Condition. In this section we introduce our assumption
that is the link between the complex Monge-Ampére equation on a complex
manifold and the real Monge- Ampére equation on an affine manifold. We study
the local consequences of this assumption, and prove a version of Stoll’s theorem
on strictly parabolic manifolds as an application.

Recall that f : C* — R is a Reinhardt function if f(z'e®’,... zme®") =
f(z,...,2") for all 6% € R. If (® = logz®, then f depends only on the real part
of the coordinates (¢?,...,¢("). This property is the main point, and so we make
the following definition.



1252 R. L. FooTE

Definition 3.1. A function f : M — R is locally Reinhardt if every point of
M has a neighborhood with local coordinates z = z + ¢y such that f(z) = f(z),
i.e., f is independent of Imz. Such coordinates are called Reinhardt coordinates
for f.

Local Consequences. Let u, 7: M — R be as in Section 2. In addition,
we assume that they are locally Reinhardt (if either is, both are). Examples 2.4
(1,2,4,5) are of this type, whereas Example 2.4(3) is not. (See Remark 3.3.) Let
z = x + 4y be a Reinhardt coordinate system for u and 7 on an open set U C M,
and let »' and 7 denote the restrictions of » and 7 to any slice of the coordinate
system U’ = U N{y = c}, ¢ € R. Since

8%u _ l O%u _ l R
022078~ 4 0129zP ~ 4 0r20zP’

the fact that u is a solution of
(3.1) rank He(u) =n—1
implies that u' is a solution of
(3.2) rank H(u') = n—1.

Since u is psh, T is spsh, and their level sets X are strictly pseudoconvex, it follows
that «’ is convex, 7' is strictly convex, and their level sets ¥’ are strictly convex.
This is relative, of course, to the Reinhardt coordinates. With an assumption on
S, we will see (Theorem 3.5) that Reinhardt coordinates are unique in a sense,
and then these properties will be global. These consequences of local Reinhardt-
ness may be useful in giving this condition an invariant characterization. The
author plans to address this in a future paper.

Next, we recall some facts about real Monge-Ampere foliations. (See [F3]).
Let M’ be a real affine manifold of dimension n, i.e., a manifold on which the
changes of coordinates are affine transformations. There is a natural flat con-
nection V' on M’ defined by declaring all coordinate vector fields to be parallel.
Let ' : M’ — R be C®. The real Hessian of v’ is H(u') = V'du'. We assume
that ' is a solution of (3.2), and that ¥ is strictly convex. Similar to the
complex case, M' is foliated by straight lines such that «’ is linear on each line.
A vector X € TM' is tangent to the foliation if and only if H(u')(X,-) = 0.
Each level set &/ of v’ is strictly convex, the leaves of the foliation and the level
sets are transverse, and H(u') is positive definite on TX'. There is a unique
vector field 2, tangent to the foliation that satisfies du’ ( #:) = 1. As in Defini-

tion 2.5, we define the tensor &' = V' %, and think of S’ as a vector bundle

map TM' — TM'. Clearly S’ = 0 if and only if -8—37 is parallel. We have the

following analogue of Proposition 2.6 [FF3, Lemma 7, Corollary 8].
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Proposition 3.2 (Properties of S’ and H(u').).

1

2
3) 8 is symmetrzc with respect to H(u'), and thus has n—1 eigenvalues.
4 =-9'?,

a/au'

(1) §'32 = Vi o aer = 0 and Vo gudu’ =0.
(2)
(3)
(4)
(5) (V; 8/0u HW))(X,Y)=-HW)(S'X,Y).
(6)
(7)
(8)
(9)

S’ takes its values in TY', so we can view S’ as a map TY' — TY'.

6) (VxS)(Y) = (Vy 5')(X).

7) (VixH(W)) (Y, Z) is symmetric in X,Y,Z.
8
9

The eigenspaces of S’ are V’-pamllel along the leaves of the foliation.

The eigenvalues A of S’ satzsfy = —MA2. Thus A = Zurrps Where a and b
are parameters that depend contmuously on the leaves. If o leaf crosses the
level set $f, = {u' = 0}, then a and b can be scaled so that b= 1.

(10) Let X be an eigenvector of S’ that is V'-parallel along a leaf £' of the folia-
tion. If 'X = %=X (a and b as in Part (9)), then H(W')(X,X) = 255
along ¢, where the magnitude of |c| can be chosen by scaling X. (Note: In
the applications of this, ¢ will usually be determined by making X an H(u')-
unit vector all along ¢’ in the case a = 0, or at least at the point where ¢/
crosses {u' = 0} when a #0.)

Returning to the complex case, let u, 7, v', 7/, z = z +1iy, U, and U’ be
as in the beginning of this subsection. Decompose the real tangent bundle of U
as TU = T*U @ TYU, where T®U = span{0/0z*} and TYU = span{8/0y°}.
Note that J interchanges T®°U and TYU. For X € TU, write X = X; + X,
where X, € T*U and X, € TYU. On U we obtain a flat connection V' defined
by declaring 8/9z% and 8/8y* to be parallel. On each slice U’ we can define
72 €T°U and §' : T°U — T°U. For X € T*U, it is clear that H(u')(X,") =0
if and only if Hc(u)(X,-) = 0. If £ is a leaf of the complex foliation, then
£NU’ is a leaf of the real foliation on U’. Since % is the unique real vector

field tangent to £ such that du(Z) =1 and du(JZ) = 0 (see the discussion

preceding Definition 2.5), we have 6‘9 au, Then

ZeTeU, J2& €TV,
§':TY - TY =TENT*U,

%, & =0,and Vi, 5" =0.
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Extend S’ to all of HX. by setting §'X = Vi %, ie, 8 =00n HENTYU. Since
V' is the connection for the flat Kéhler metric 3" dz* ® dz® on U, it follows that

SX = E(X10) + (X)) = Vs o€+ Vixon €
=V +JIVix &

for X € HX. Thus, SX,; = §'X; and SX, = JS'JX,.

It is now clear that the eigenvectors of S are in TY' and JTX', and the
eigenvalues of § : TY' — TX' are the same as those of S'. The eigenvalues of
S’ satisfy % = —X? by Proposition 3.2(9). Thus half of the eigenvalues of S

satisfy 22 = —\2 and the other half satisfy 22 — X2 (see Proposition 2.6(5)).

Remark 3.3. As a consequence, we see that Example 2.4(3) is not locally

Reinhardt, since A = m satisfies neither of these equations. (See Remark 2.7.)

Definition 3.4. The primary eigenvalues are those non-zero eigenvalues

that satisfy %— = —A2, The corresponding eigenvectors are called primary eigen-
vectors.

The decomposition TU = T?U & T¥U may seem a bit unnatural at first,
however consider the following. Suppose that the eigenvalues of S : HY — HY,
in U are all non-zero. Then, without reference to specific Reinhardt coordinates,

we see that T*U is the span of % and the primary eigenvectors, and TYU is

the span of J % and the remaining eigenvectors. More generally, we have the
following results.

Theorem 3.5. Suppose that no eigenvalue of S : HY — HY. vanishes on
an open set.

(1) If z and w are both Reinhardt coordinates on some connected open set, then
z and w are related by an affine change of coordinates 2® = Za,?,‘wﬂ + ¢,
where (ag) is a constant, real matriz, and each c* is a complex constant.
(2) V' is well-defined on M making M an affine manifold.

(8) Each Reinhardt coordinate system is an affine coordinate system.

(4) The decomposition TM = T*M & TYM is well-defined.

(5) Let C be an integral curve of %. Then there is a neighborhood of C that has
a Reinhardt coordinate system (21,...,2") such that u = Rez! on C.

Proof. Let U be the common domain of z and w. It suffices to show that
the matrix (32“ JOwP ) isreal on U. In proving this, arbitrary real linear changes

of variables are permitted.
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Let £ be a component of the intersection of U with a leaf of the complex
foliation. Assume the eigenvalues are non-zero on £ (this holds for almost every
leaf). Let z = z 414y and w = v+, where z, y, v, n € R*. For p € ¢, the
decomposition TpU = TyU @ TYU is well-defined. It follows that u(z) and u(v)
induce the same map §" : T;'Z — T %,

Recall our convention for indices (Remark 2.1). In the real case, it is pos-
sible to find a linear change of coordinates such that on a fixed leaf z2,...,z"
are constant, du/0z' = 1 (i.e., 0/8z' = 8/0u), and 8/0z?,...,8/0z™ form
an H(u)-orthogonal basis for T,X' of eigenvectors of S’ for each p on the leaf.
These claims follow from Proposition 3.2 (1-3, 8). Applying the same real lin-
ear change of coordinates to the coordinate system z yields another Reinhardst
coordinate system (call it z again) such that on ¢, we have that z2,...,2" are
constant, du/dz' = 30u/dz' = % (ie., 0/02' = &), and 0/022,...,8/02"
form an He(u)-orthogonal basis for TI}*OE of eigenvectors of S for each p € ¢
(in particular, Ou/82zF = 1 9u/0z* = 0 on £). Assume the same has been done
for the w coordinate system. By one final real linear change of coordinates, it
can be assumed that 8/0z* and 9/0v* share the same eigenvalue Ax. Adding a
constant to u has no affect on (3.1), thus we may assume that £ meets the level
set X9 = {u = 0}. By Proposition 3.2(9), the primary eigenvalues have the form
Ak = ag/(agu+1).

From

Z OwP 6z°‘ '

it follows that 0 = Ou/dw” = 82! /6w* - § and } = Ou/Ow' = 92! /0w’ - 1 on L.
Hence 8z /0w* = 0 and 82! /0w' =1 on £.
In the leaf direction,

%u 8 &8
Fwiggt = Helv) (aT w)

L BT (D
ow! dw? il 022" 9z0 ) °

On ¢ it follows that

_ 6 (9 =- aZj
0= He(w) (5?07) = Z gy

2
a 0
He(w) (53535 )

Then 927 /dw! = 0 on £ since Hc(u) (8/827,0/8%7) > 0 on L.
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On all of U we have
8%u 0 Is}
uraer ~ e (W’&ﬁ)

Z He(u) 2
ow 781:}’? 63‘* 97°

Z 6zﬂ 62
SwY Ow? 8z220zP°

Since w is real and independent of y and 5, it follows that each Ou/02°,
Ou/OuwP is real, and that 0%u/0z°97° = 0%u/02°8z° and 0%u/Ow™Ouw’
= 9%u/0w*dw? are real. Thus

?u Z (9u 2% 828 0%u
OwYdwY (')(w”Y)2 Fral £ OwY Ow? §z20zP°

On /£ in the directions tangent to the level sets we have

(3:3) Hc(u)(%,é%%; ZHc(u)(%,%)

1 8221 02 \? o 0
= 28w +Zj: <a_wk') He(u) (a_a_> :

Since 8/0z* and 8/dv* share the same eigenvalue Ay on ¢, it follows that if
Aj # Ak, then

0=Hc(u)<awk»azj> Z (azl 821)

8 c:()(aJ 621>

and so 827 /Ow* = 0. Thus the sums in (3.3) are taken over only those j for which
Aj = Ag. Assume 8/0z%,...,8/02" and 0/8w?,...,8/0w™ form Hc(u)-unitary
bases of T19%,. Then

a 0 g 0 1
e (e 5 ) = He (55555) = s

Owk
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when A; = A by Proposition 3.2(10). After multiplying by aru+1, (3.3) be-
comes
2 P\ 2
1 0221 07’
1= Ej :g(aku+1)5(wT)2+ Ej (W) f

Note that u = 2! = v! on £. Since 827 /0w* and 822 /9(w*)? are holomorphic
on £ and ax # 0, it follows that 822!/8(w*)? = 0. Simple algebra then shows
that the 827 /0w* must all be real on £.

For the general Reinhardt coordinates z and w, the matrix (92%/0w?) is

879
Owk

real on an open, dense subset of UU. By continuity, it is real on all of U. This
proves (1).

Statements (2-4) are direct consequences of part (1).

To prove (5), Let U be a simply connected neighborhood of C. Let p € C.
By part (1) we can find Reinhardt coordinates z',...,2" on some neighborhood
V C U of p such that u = Rez! on CNV. The affine functions z*,...,2z" have
unique affine extensions to U. Shrinking U if necessary, these functions are the
desired coordinates. O

The condition on the eigenvalues is needed, as the following example shows.
Let u = Rez® + (Rez!)? = 22 + (z1)? on C2. The leaves are the complex lines
parallel to the 22 axis, and § = 0. If 2! = jw! and 22 = w?+ (w')?, then
2t = —ql, 22 = 124 (v1)2 — (y1)%. Then u = v2 + (v!)?, and so (w!,w?) is also
a Reinhardt coordinate system.

Application to Strictly Parabolic Manifolds. We close this section by
applying the Reinhardt condition to a special case of Stoll’s theorem on strictly
parabolic manifolds. Please recall the definitions, background, and notation from
Section 1.

Proposition 3.6. Let M with 7 : M — [0,R2), 0 < R < oo, be a strictly
parabolic manifold in which T is C° on M and locally Reinhardt on M = M-
7710). Then there is a biholomorphism F : B} — M such that To F = 7.

Proof. All of the following steps except (5), which uses the Reinhardt con-
dition, have appeared in [S2], [B1], and [W1]:

(1) 771(0) consists of a single point O.

(2) Each leaf is a punctured disk, with O as the puncture.

(3) Letting B be the R-ball in ToM, the map F = Exp|pp : B — M is a
diffeomorphism and holomorphic on the leaves.

(4) F is a biholomorphism if and only if £ is holomorphic.

(5) ¢ is holomorphic.
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To prove (5), we show that § = 9¢ + € = 0. Let £ be a leaf of the foliation.
By Proposition 3.2(9), the eigenvalues of S on £ are \; = ta;/(a;u+b;). Let

T = /T = €%/2 be the geodesic distance to @ on M. By Proposition 2.8(3) we

have
2

1 a;
Ric(£,€) = —str§? =-S5 ——%
o (£ E) 2 3 Z (2a,~logr+bi)2

i
This function must be C! on the disk £U O, since T is C5. This easily implies
that each a; must vanish. Thus § =0 and ¢ is holomorphic. O

4. The Embedding Theorem. This section contains the main results of the
paper. We introduce our global hypotheses, which, taken together with the local
results of Sections 2 and 3, yield a curvature estimate. This is combined with a
result due to Demailly to prove the main embedding theorem.

The following definition generalizes Stoll’s notion of a (strictly) parabolic
manifold.

Definitions 4.1.

(1) Let Mbea connected, complex manifold of dimension n, and let T : M-
[0,00) be a spsh exhaustion. The pair (M ,T) is said to be strictly parabolic

at infinity if there is a compact subset K C M such that the function
u = log T satisfies

(4.1) (80u)™ = 0

on M =M~K. If r is C, we will say that (M,7) is C*.
(2) If 7 is locally Reinhardt on M, then (]Tf ,T) is said to be of Reinhardt type.

The idea to consider manifolds that are strictly parabolic at infinity is due to
Burns [B1-2], [F2]. The Reinhardt condition is a severe restriction. However, as
we have seen, many specific examples do enjoy this property, namely Examples
2.4 (1, 2, 4, 5), the examples in [B2], and the tube domains studied by Patrizio
[P3].

Remarks 4.2.

(1) Since 7 is proper, the set K can be chosen, for convenience, so that M =
OK is a level set of 7. The strictly parabolic case is when M = {r=0}=
{u = —o0}.

(2) When OM = {u = ¢} for some ¢ > —oo, the number ¢ can be set arbitrarily,
since adding a constant to u does not affect anything in Definition 4.1.
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(3) Examples 2.4(2,3) do not fit Definition 4.1(1) exactly since 7 is not differ-
entiable on K = M — M. The following easily-proved lemma allows 7 to
be smoothed at the expense of making K larger. Example 2.4(5) is locally

Reinhardt on M, but is not strictly parabolic at infinity as M — M is not
compact.

Lemma 4.3. Let M be Stein and suppose that ¢ : M- [0,00) is @ con-
tinuous ezhaustion that is spsh on {¢ > a} for some a > 0. Then there exists
a spsh exhaustion @ : M — R such that w=¢ on{p>a}. If pis C*, then @
can be chosen to be CF.

The main results of the paper are the following two theorems, the second of
which is a special case of the conjecture due to Burns (see Section 1).

Theorem 4.4. Let (M,T) be strictly parabolic at infinity and C4. If there

18 a continuous function v : M >R and a, 3> 0 such that < a(u—logu)+
holds outside some compact set and such that the curvature estimate

Ric, + dd°y > 0

holds on M, then M is biholomorphic to an algebraic submanifold of C*"+1,
Here Ric, denotes the Ricci form for the T-metric.

Theorem 4.5. Let (M,T) be strictly parabolic at infinity, C®, and of Rein-
hardt type. In addition, assume on each component of M = M — K that the
tensor S has (mazimal) rank n — 1, or that the foliation is holomorphic (S = 0).
Then there exists a C® function 1y : M — R with Yo = u—logu on {u > 2},
and a sufficiently large constant N such that

(4.2) Ric, +Nddyo > 0

on M. Taking v = Nty in Theorem 4.4, it follows that M embeds algebraically
mn C2n+1‘

The proof of Theorem 4.4 involves an adjustment of the geometry to ac-
commodate the hypotheses of a result of Demailly (Theorem 4.6). The proof of
the curvature estimate in Theorem 4.5 is a lengthy computation. The Reinhardt
condition allows the use of the results from the real case (Section 3) to compute
the Ricci te' or explicitly. If 7 is C*, then the tensor S is C*=3. In the course
of the proot three derivatives of S are taken, and so we need 7 to be C6. We
conclude this section with Example 4.6, showing that the curvature estimate can
fail if the condition on S is dropped.
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Theorem 4.6 (Demailly [D]). Let M be a connected, complex manifold of
dimension n. Then M is biholomorphic to an algebraic submanifold of CN if

and only if there exists a C* spsh ezhaustion ¢ : M — [0,00) that satisfies the
following conditions:

) /~(ddc<p)" < o0,

M
(2) {dy =0} is finite, and

(3) There is a continuous v : M — R with P < ap+ B for some o, >0 such
that

(4.3) Ric+ddy > 0,

where Ric is the Ricci form for the metric with Kahler form dd®(e¥). Fur-
thermore, Ric may be replaced by the Ricci form of any metric with Kdahler
form Q such that

(4.4) e~ (@) gde(e®) < O < eA?tBdde(e¥)
for any A, B, a, b > 0.

The curvature estimate is, of course, the appropriate a-priori estimate for
Hérmander’s L2 method for solving d-equations. (See, e.g., [H8}, [SY], [GW].)

Proof of Theorem 4.4. To use Theorem 4.6, we must define the function
@. It is tempting to let ¢ = u on {u > 1}. This satisfies (1) of Theorem 4.6,
but is not spsh. Instead, we use ¢ = u —logu. By Remark 4.2(2), we assume
that (4.1) holds on {u > 2}. Then ¢ is spsh on {u > 2} and extends to a spsh
function on all of M by Lemma 4.3.

Since {u < 2} is compact, (dd°p)™ has a finite integral over it. On {u > 2}
we have

n 1\"!
(ddp)" = " (1 - E) du A d°u A (dd®u)™ L.

Stokes’ Theorem and (4.1) imply that d°u A (dd°u)™~! has the same integral C
over every level set {u = ¢} for ¢ > 2. Applying Fubini’s Theorem, we obtain

o0 n—1
/ (ddp)"™ = nC/ iz (1 - l) du.
{u>2} 2 U u

This is finite, and so hypothesis (1) of Theorem 4.6 is satisfied.
Hypothesis (2) is satisfied by making ¢ a Morse Function on {u < 2}.
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For Hypothesis (3), we show that (4.4) holds for Q = dd°r and appropriate
choices of the constants, implying that (4.2) can be substituted for (4.3). On
{u > 2} we have

dd*(e®) = dd° (5) = % (u—1)%+1) duAndu+ %(u— 1)dd°u

and
dd®t = (du A d°u + dd°u).

Comparing coefficients, one sees that
dd®(e¥) < dd°T < e¥dd®(e¥)

on {u > c} for some sufficiently large ¢ > 2. Since {u < ¢} is compact and 7 and

e¥ are spsh on M , constants B,b > 0 can be chosen so that
e~ dd°(e¥) < dd°r < e?TBdd®(e¥)

holds on all of M, which is (4.4). By Theorem 4.6, we can identify M with an

algebraic submanifold X of CV. Reducing the dimension of the ambient space
to 2n+1 is a simple exercise in algebraic geometry. See, e.g., [S]. O

Next we prove the curvature estimate.

Proof of Theorem 4.5. Choose and fix a component M’ of M. We first
show that if ¢ and N are sufficiently large, then (4.2) holds on {u > ¢} N M’.

If z = (2!,...,2") is a holomorphic coordinate system, then the Ricci form
for the T-metric is Ric, = —dd° (logdet(r,5)) . (See, e.g., [He].) Then (4.2) is

equivalent to
(4.5) —Hc¢ (logdet(ryg)) + NHc¢(3o) > 0.

Now assume z = x + iy is a Reinhardt coordinate system. If f(z) = f(z+1iy)
is C? and independent of y, then 8%f/82°0z° = $8?f/0z*0xP. For a fixed y,
Hc(f) pulls back under z — z+iy to TH(f) = %Za,ﬂfaﬂdx"‘@dxﬂ, where
the subscripts now (and for the rest of the proof) denote real derivatives. Then
(4.5) pulls back to one-fourth of

(4.6) R+ NH (o) > 0,

where R = —H (logdet (1,5)).
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Proving (4.6) is entirely a real variable matter. We will make much use of
the results and notation of Section 3, especially Proposition 3.2. We will have no
need for the connection of Section 2, and so the affine connection V' of Section 3
will be denoted by V. To prove (4.6), we explicitly compute R+ NH(1)). The
result is (4.29).

Assume for the moment that rank(S) = n—1 on M’'. The case S = 0 is
considered in the paragraph containing (4.31). Let C be an integral curve of 3%.
By Theorem 3.5(5) we may choose a Reinhardt coordinate system that covers C.
It will be shown later that such a coordinate system exists when S = 0 as well,
even though Theorem 3.5 cannot be used. Note that the computations leading
to (4.29) are made relative to such a coordinate system, and so are valid when
S = 0. By a real linear change of coordinates (see the proof of Theorem 3.5(1)),
we may assume along C that X, = 9/0z' = 9/du, and that X, = 8/da*,
k = 2,...,n, are orthogonal primary eigenvectors of S. (Recall our convention
for indices in Remark 2.1.) By Remark 4.2(2), we assume that C meets {u = 0}
ab some point p. Making Xs,..., X, an H(u)-orthonormal frame at p, we have
by Proposition 3.2(9,10) that

Dk
(4.7) H(u)(Xj, Xi) = wjr = ak1f+ T

along C, where ag,...,a, are the eigenvalues of S at p. Each a; > 0, since
rank(S) = n—1 and H(u) is positive semi-definite. We also have that

H(u)(X1,Xa) = 14 = 0.

Define Rag by R = 32, 5 Rapda® ® dz?, where R is the tensor in (4.6).
Noting that (7,5) is diagonal on C, a routine computation yields

Tay8TBy6 Tofyy
Rop = —(logdet (15)) =) —EX _ " 2007
: ( )“ﬂ g ToyyT86 Z,,: Ty

on C. (All computations through (4.29) will be on C.) Substituting 7 = e* and
using the facts that (u.p) is diagonal, u; = 1 up = 0, and w14 = U110 = Uy110 =
(), one obtains

(1) Ru=z@_zm‘

o UKk S Ukk
) g it
(4.8) u2;; Uy Uiikk
(3) Ry = —nuy + 2uy4 + 2u_“ — U1t +§ Urelee ; U
(4) Ri; = Z UikeUjke Z '“ijkk, for i # j.

Uphethpp Uk

k& k
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The terms uj1;; and 2u?;; /uy in (4.8(3)) cancel as a result of (4.7). The
above formulas are written collectively as

UakeUBke Z UaSkk

Rop = —NUag + 2U108 + Z
P UkkULe & Uk

The rest of the proof involves computing expressions for uqg, Uafys Yoy
and Rog. Plugging ug, = ale+f and A\x = 2= into (4.8(1)), the leaf curvature

term becomes

2

ak 2 2

(4.9) R11=—§ ( ) =—E Al = —trS?,
" aru+1 T

as expected.
Let X, Y, Z be affine parallel vector fields. Note that

(4.10) [Z,X] =-5X and [X,SY] = (VxS)Y.
Also,
(VosouVx H(w)) (Y, Z) = (Vx VasauH(u)) (Y, Z) — (Vsx H(u)) (Y, Z)
= X ((Vosou H(w)(Y, Z)) — (Vy H(u)) (X, Z)
= —X (H(u)(5Y,Z)) — (Vv H(v)) (5X, Z),
by Proposition 3.2(5), and so
(4.11) (VosouVx H(u)) (Y, Z) = — (Vx H(w))(SY, 2)
—(VyH(u) (5X,2) ~ H(u)((Vx$) Y, Z).
Note that this is a tensor in Y and Z. From Proposition 3.2(4) we have
(4.12) Vo/ouVx S = —Vsx§ — Vx 5?2
= —VsxS—(VxS5)S—S(VxS).

Equations (4.10), (4.11), and (4.12) will be used frequently in the rest of the
proof.
From ux = (Vx, H(u)) (X;,X) and (4.11) it follows that

0
(4.13) %uijk = (Va/auVXiH(u)) (X, Xk)

= —(Xi + A)uige — H(u)(Vx, S) X;,Xx)
= — (A + XA + Ap) wiin — fijr(u),
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where fijr(u) = H(u)((inS’)Xj,Xk) — Mguijk along C. Note that fize(u) is
symmetric in all three indices by (4.13).

We next find an expression for fi;x(u). Consider H(u)((Vx,S)X;,Xx) along
C:

o (H () (Vx,5)X, Xx)
= (VosouH(w) (Vx,9)X;, X) + H(uw)(Vo/0uVx, ) X;, Xx)
= —H(u)((Vx.5)X;,SXx)
— H(u)((Vsx,S) +(Vx,8)S + S(Vx,9) X;, Xx)
=—(Ai+Aj+2)) H(u) ((in S)Xj,Xk),
by (4.12). Using A; = -2, it follows easily that

Aix

@1 H@(VxS)X, X = o e D e r

where Aj;, is the value of H(u)((Vx,5)Xj,Xx) on {u = 0}. Note that Ajjx =
Aji, by Proposition 3.2(6). We then have that

0
fi’jk(u) = — ()\i + /\j + 2)\k) H(u) ((in S)Xj,Xk) + /\ﬁuijk - /\kauijk
= — (A + A5+ k) fije(u),

and so

_ Aiji
(aiu+1) (aju+1)(agu+1)

(4.15) fijn(u)

Note that Aijk is symmetric in all three indices since fijx(u) is.
Plugging into (4.13) we obtain

b Aijk
— Ui = — (A i+ A ik — = ;
g Lk (Xi + Aj + Ae) tije (a;u+1)(aju+1) (agu+1)

This can be integrated, after multiplication by (a;u + 1)(aju + 1)(axu + 1), yield-
ing

S A;jru + Bij
YET (eu+1) (agu+1) (agu+1)

(4.16)
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Note that Bjj is symmetric in all three indices.

We now have two expressions for H(u)((Vx,S)X;,X), namely (4.14) and
another obtained by combining (4.13) with (4.16) and its % derivative. As a
result,

(4.17) Aijk = Aijk + axBijk-
We can now compute the “cross” tangential-leaf curvature terms. Plugging (4.16)
and its 22 derivative (which is uy4%) into (4.8(2)), we obtain

fijkk - a}-akuzﬁjkk -+ ﬂjﬂjkk (l’.‘.‘.ku + 1) 4 “A:Bjkk (a_,'u + l)

Ri; =
N Zk: (aju+ 1)? (apu+1)°

’

which, using (4.17), can be rewritten as

(418) Ry = Z Ajrk (aju+1) + Agg;j (aku-+2- 1) — Ajkkz(aju +1) (apu+1)
P’ (aju+1)(aru+1)
Next, we compute u;;xe = (Vx, Vx, H(w)) (Xk, Xe). Using (4.10) and (4.11)
we obtain
‘é%uijké = (Va/0uVx, Vx, H(u)) (Xk, X¢)
= —Mtijie + (Vx, VoouVx, H(w)) (Xi, Xe)
= —Nugjke + Xi (VoouVix, H(u)) (Xk, X¢))
= —Niugke — Xi (Vx, H(w)) (S Xk, X¢))
— Xi (Ve H(w) (SX;, Xe) + H(uw)(Vx; S) Xk, Xe))
= — (A + Aj + Ag) Ugjre — (inH(u)) ((ij S)Xk,Xe)
— (Vx, Hw)) (Vx,8) X, Xe) — (Vx, H(w) (Vx,5)X;, Xe)
— H(u)((Vx,Vx, S)Xx, X).

Then
0
(4.19) 5 ikt = = (Ai + Aj + A+ Ae) wijre — fijne(u),
where
(4.20) fijke(uw)

= (Vx,H()) (Vx,S) Xk, Xe) + (Vx,; H(w)) (Vx,9)X:, Xe)
+ (Vx, H(u) (Vx,5)X;, X)

+ H(u)((Vx, Vx,; S) Xk, Xe) — Mettsjne.
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Note that fi;jxe(u) is symmetric in all four indices by (4.19).
To get an expression for f/.;,(u) we compute the % derivatives of the first

four terms on the right side of (4.20). (Note that S is C? since 7 is C%. Thus
Jijre is differentiable.)

Let gijne(w) = (Vx, Hw) ((Vx, $) X, X¢) . Then

Giike(w) = (VoyouVx, H(w)) (Vx, ) Xk, Xe)
o (VXiH(U))((Va/aqujS)Xk,Xg).

Using (4.11) with X = X;, Y = X,, Z = (Vx, S) X, and (4.12), one obtains
Gijke(w) = =X + Xj + X + Ae)gijue(u) — H(u) (Vx,8) X, (Vx,S)Xx)
— (Vx, H(w) (S(Vx, 8) Xk, Xo).
Let X, Y, Z be parallel fields. Then
(VxH(u)) (8Y,Z) - (VxH(u)) (Y,52)
= X (H(u)(SY,Z)) — H(u)((Vx9S)Y,Z)
- X(H(u)(8Y,2)) + Hu)(Y, (VxS)Z),
and so
(VxH(u))(SY,Z) = (VxH(u)(Y,5Z)
+ H(u)(Y,(VxS)Z) — Hw)(VxS)Y, Z),

which is a tensor in X,Y, Z. Letting X = X;, Y = (Vx,5) Xi, Z = X, it follows
that

(4.21) Giike(t) = — (A + A5+ A+ 2X¢) gijre(u)
—2H(u)((Vx, 8) Xe, (Vx, S) X)
+ H(u) ((in S) (VXj S)Xk,Xg).

Let h(u) = H(u) ((VXiij S)Xk,Xg). Then

W (u) = =Aeh(u) + H(u)((Vaou Vx, Vx,; S) Xk, Xe)
= — (X + ) h(u) + H(u) ((in Vo/ouVx; S)Xk,Xg).
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Using (4.12), this becomes
B (w) == (X + o) h(w)
— H(w)((Vx, Vsx; S+ (Vx,Vx, S)S + (Vx, S)(Vx, S)) X, X¢)
— H(u)((Vx,8)(Vx; 8) + 8(Vx, Vx,; 8) Xk, Xs),

which simplifies to
(4.22) R(u) = — (A + A + A+ 20e) h(w)
- H(w) ((Vx,) (Vx,$) X1, Xe)
H(u) ((Vx 9) (Vx, S Xi,Xe)

— H(w) ((Vx,S) (Vx,S Xj,Xg).

Cyclically permute %, j, k in (4.21). Adding the sum of the resulting equa-
tions to (4.22) and using (4.19) yields the derivative of (4.20):

(4.23) Fijne(u) = = (Ni+ X5 + X + Ag) fije(u)
—2H(u) ((vxl. S) Xe,(V, §) Xk)
— 2H(u) ((vxj S) X¢,(Vx, S) Xi)
—2H(u) ((vXkS) Xe,(Vx,S) Xj) .
Recalling (4.7), equation (4.14) implies that

tan Aijr
(x5 %)™ = 2 e D agut Daat

where X" means the component of X that is tangent to the level set T of
1 with respect to the decomposition TM = TX & (%). Equation (4.23) then
becomes

Fiine(w) = — (N + X5 4+ X + Ae) fijne(u)
(4.24) B 2 Cijker
(aiu+1) (aju+1) (aru+1) (aeu+1) & (a,u+1)*
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where Cijker = Aier Ajkr + Ajer Apir + Arer Aijr. Note that Cijker is symmetric
in 4,4, k, L.
Equations (4.24) and (4.19) can be rewritten as

(4.25) 2 (——f he(1) ) = oy e
Ou \ Ui U Uk Uee ~ (aru+1)°
and
(4.26) i( Uijke ) ___ Jijke(w)
Ou \ Uiy Ukkles Ui U5 jURKULL

These yield

fz_;k:l 2u+ aru
4.27 _fum®) o b
( ) ’U,uu]J’U/kkUU Z ij 7'( apt+ 1) ij
and

Wijke z]klru

4.28 D B,
( ) Ui UjjUkkULe Z aru+1 + zgklu+ ijke
where D’ijkl = _.fijkﬂ(o) and Eijk:l = uijkl'u:O-

Now (4.16) and (4.28) can be used in (4.8(3,4)) to obtain expressions for
the “tangential” curvature terms. Combining this with the “leaf” term (4.9) and
the “cross” terms (4.18), and recalling that 1 = u —logu, we obtain

(4.29) R+ NH(tho) = Y Rapdz® @ da.
’ﬂ

where

N N a; 2
—————t 5% =5 — d
Ry " r > ;(aiuﬁ-l) )

A (a5u+1) + Agij (aku+1) — Ajpr (aju+1) (apu +1)

le:z 2 2 1
k

(aju+ 1) (apu+1)
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1
u Zk: (a;u+1) (aju+1)(apu+1)

(fiiklu - Bz’kl) (Ajklu = Bjke) — Cijrket®
au+1

— Dyjrru— Egjrr

Note that the dominant tangential term is

(N-m)3 aiu1+ - (ds)" = (N =) H(w).

i

Let N > n so that this is positive definite on the tangent spaces of the level sets.

Recall (see (4.7)) that ag,...,a, are the eigenvalues of S on the compact
set {u = 0} N M’, and that they are positive. Thus we may choose a,a € R,
independent of C, such that 0 < a < min{l,a;} and & > max{ax}. The
coordinate-dependent terms in (4.29) (A,-]-k,;lijk, etc.) are the values of var-
ious tensors at an orthonormal frame on {u = 0}NM’' (see (4.14), (4.16),
(4.17), (4.20), (4.24), (4.27), and (4.28)). Since these tensors are indepen-
dent of the coordinates (Theorem 3.5), and the bundle of orthonormal frames
along {u = 0} is compact, we may choose A € R, independent of C, such that
A> max{lAijkl,|A1jjk|,|Bijk|,|Cijke7-|,|Dijkg|,|Eijk[|}. If ¢ is chosen sufficiently
large, then u > ¢ implies that

~ Aa? C
l 1 au? T u?’
and
. N-n 1 (N 22 A%?4+24 C
R — <S5l —+—= = —.
W w1 Y _u2< +a2+ o> ) 0

(This second estimate uses o < 1.) For the remaining terms we have,

N a \°_ N-n
F_Z<aiu+1> o u?

%

and
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We thus have that
(4.30) R+ NH(vpo)

> N—Z’Il (d.’l?l)2 201 da 1 d:l,‘ + (N n 202)2
L k k

N-—-n 2 2C; U 2C, 2
= ’u,2 ((d:l,]) —N—_-Zik:dxldmk-i-(g—]v—_n);(dl'k) ) 3

where dz'-dz* = }(dz' ® dz* + dz* @ dz'). Choosing ¢ large enough so that
u > c implies ¥ —2C3/(N —n) > (C1/(N —n))?, we see that the right hand
side of (4.30) is positive, proving the curvature estimates (4.6) and (4.2) on
{v > ¢} N M’ when rank(S) =n—1.

Now assume S = 0 on M'. As before, we may assume that {u = 0} is
contained in M. Given p € {u = 0}, let C, denote the intersection of {u > 0} and
the integral curve of % passing through p. Suppose that a Reinhardt coordinate
chart can be chosen that contains C,. Tracing through the computation leading
to (4.29) (it begins in the paragraph containing (4.7)), one sees that a; = A;jx, =
/iijk = Cijklr = Dijkg =0 (see (4.14), (4.16), (4.17), (4.20), (4.24), (4.27), and
(4.28)). Then (4.29) becomes

R+ NH(th) = %(dml)z + (N— n— %) > (da')?

(4.31)
+ Z <Z BikeBjre — Eijkk) dzt - dz?.

Bk \ £

Since Theorem 3.5 does not apply, a global affine structure on M’ may not
be defined, and so the tensors involved in (4.31), namely H(u) and its affine
covariant derivatives, depend on the Reinhardt coordinates. Suppose, however,
that finitely many Reinhardt coordinate charts Uy, ...,U,, can be chosen to cover
{u > 0} N M’ such that whenever p € U; N {u = 0}, then C, C U;. It is clear
from (4.31) that N can be chosen sufficiently large so (4.6) and (4.2) hold on
{u>2}.

To see that these coordinate charts can be chosen, recall that in the real
case S’ = 0 if and only if 5> , is affine parallel (Section 3). The flow of 5,7 s then
an affine translation. Slnce the complex Reinhardt case can be wrltten locally
as u(z) = u'(z) for some v’ satisfying the real case (Example 2.4(4)) and the
inclusion z — z + iy identifies % and %, it follows that the flow of % is a
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translation in Reinhardt coordinates when S = 0. Let ®; denote the flow of %
for t > 0. Then @, is a local biholomorphism.

Let p € {u = 0}, and let z denote local Reinhardt coordinates on a neigh-
borhood of p. Then z; = z0®_; is a local holomorphic coordinate chart on a
neighborhood of ®;(p). Moreover, we have

Ou d a 0 Ou
o = (% (a_k) 4= g (no ) = gt = gk

Thus Imu/8zF = 0, and so z is a Reinhardt coordinate system. If the coordi-
nate charts z; and z, meet, then the coordinate change is given by translation in
either coordinate system. It follows that the initial coordinates zy = 2 can be ex-
tended to an open set U with the property that if p € UN {u = 0}, then C, C U.
Since {u = 0} N M’ is compact, it can be covered with finitely many coordinate
neighborhoods of this type, and these neighborhoods cover {u > 0} N M'.

In both cases, rank(S) = n—1 and § = 0, we have found ¢ > 2 and
N > 0 such that (4.2) holds on {u > ¢}NM’. Since {u = 0} is compact and
each component of M contains a component of {u = 0}, M has finitely many
components, and so a single N can be chosen to work for all of them. Since
%o = u—logu is spsh on {u > 2}, 9, can be extended to be a spsh function on
all of M by Lemma 4.3. Then, since Ric, +Ndd 4 > 0 holds outside a compact

set, we can make N sufficiently large so that this holds on all of M.
This completes the proof of Theorem 4.5. O

The following is an example in which the curvature estimate (4.2) fails on
{u > ¢} for every choice of ¢ and N. Note that S drops rank on one of the leaves.
Since any real solution can be complexified by the method in Example 2.4(4), it
suffices to give a real example in which (4.6) fails.

Example 4.6. In R?, let 3g = {z%+y2 =1} and 3_; = {42? 4+ 16y% = 1}.
Let u be the unique solution of det H(u) = 0 on {4z% +- 16y > 1} with u = 0 on
Yo and u = —1 on X_;. This function can be constructed using Example 6(2)
of [F3], where N is the vector field along ¢ defined as follows. For p € 2o, let
q € X_1 be the closer to p of the two points for which T,% 1 is parallel to T, %,.
Set N = p—g. The leaves of the foliation are the rays {p+tN, | t > —1} for
p € Xo. This construction leads to the only solution, since the tangent spaces of
the level sets of 4 must be parallel along the leaves of the foliation. Furthermore,
the solution is real analytic. Along ¥y we have % = N. If 3 is parameterized by
o(t) = (cost,sint), then the eigenvalue of S at o (t) is a(t) = 1 — (3cos?t +1)~3/2,
We have a(t) > 0, but a(+%) = 0, and so S drops rank along the y-axis, which
is a leaf. The parameters A = Aj1, A = Ajyy, B = Byyy, Ciinn = 342,
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D = Diin11, and E = Ej11; can all be explicitly computed as functions of .
It turns out that A, 4 € O(/a), B € O(a), and that D(+%) and E(+%) are
non-zero. It follows that there is no set {u > ¢} on which R+ NH(¢o) > 0 for
any choice of N.

One might think that requiring S to have constant rank k, 0 < k < n—1,
might imply the curvature estimate. However under the assumption that some,
but not all, of the eigenvalues vanish, and without additional information about

the parameters A;ji, Aijk, etc., the cross terms in (4.29) do not decay quickly
enough for R+ NH(1) > 0 to hold even on a fixed integral curve C of a%.
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