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(ii) P, is parallelto Py, k=1,...,n.
(i) P,NI"+ ¢, k=0,1,...,n.
(iv) The distance of P, from the origin is k/Vn, k = 0,1,...,n

Further, let S,, be that portion of I” bounded by P,_; and P,, and let V(S,,) denote the
volume of S,
Then the following result can be proved.

THEOREM. n'V(S,,) = A(n,k).

Proof. Let X,,..., X, be n independent and identically distributed uniform random variables
defined over [0, 1]. Let

n
G(X,....X) = L X =X,
Then the probability density function of X, takes the form
. _l n—1
)= SCV (el 2)] 7 osxen

where c¢(u) = 01if u <0, and c(u) = u if u > 0 (See [2], pp. 257-259 for a proof of this result.)
Elementary integration then yields

pr{( _1)<X<n} /k/n fx(x) dx

(k—1)/n
k
= SV k=) = Ay
i L

Finally, since S,, = {(Xi,..., X,)(k — 1)/n < G(X,,...,X,) < k/n}, the theorem follows.
Note that the result remains true (with some minor modifications) if we replace (1,...,1)’ by
any vector parallel to a main diagonal of I".
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In an undergraduate advanced calculus course, one of the important theorems a student sees is
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the inverse function theorem. The most elegant and general proof of this uses the contraction
mapping lemma (see [1]). Unfortunately, time does not usually permit one to go into the theory of
metric spaces, Cauchy sequences, completeness, etc., necessary for the proof of the general
contraction mapping lemma.

The purpose of this note is to give a simple proof of the contraction mapping lemma in R”
based on a principle familiar to calculus students.

MaX / MIN PRINCIPLE. A continuous, real-valued function defined on a non-empty, closed,
bounded subset of R" attains its maximum and minimum on that set.

A proof of this, of course, requires many of the topics one is forced to omit. We feel, however,
that our use of this principle to prove the contraction mapping lemma is pedagogically valuable.
Early in a calculus course one typically invokes the max/min principle (usually without proof)
when discussing max/min problems, and students seem to be reasonably comfortable with it. Its
application to the inverse function theorem via the contraction mapping lemma should seem
natural and elementary. This approach also serves to introduce students to fixed point techniques,
which are powerful tools in many branches of mathematics, particularly differential equations and
numerical analysis.

DEFINITION. Let C € R”". A mapping T: C — R" is a contraction if there exists a constant «
with 0 < a < 1 such that

IT(p) — T(q)ll < allp — gll forall p,q e C.

THEOREM (Contraction Mapping Lemma on R"). Let C be a non-empty, closed subset of R",
and let T: C — C be a contraction. Then T has a unique fixed point in C, that is, a point p for which

T(p)=p-
Proof. Define f: C = R by f(x) = ||x — T(x)|] Note that a zero for f is a fixed point for T.
It is easy to show that
1f(x) =f(P)I < A+ a)llx = yll,

and so f is continuous. If C is bounded, the max/min principle implies the existence of p € C
such that f(p) is a minimum. Then f(p) < f(T(p)) < af(p). Since f(p) > 0 and a < 1, we
have f(p) = 0.

If C is not bounded, choose ¢ € C and set

C={xeCf(x)<f(q)}.
If x € C, then

llx = gll < llx = T(x) || + IT(x) — T() | + IT(q) — qll
<2f(q) +allx — qlI.
Hence
Ix - gl < 249

so C is closed and bounded. From f(T(p)) < af(p), it follows that T preserves C, and we may
proceed as above.
Finally, if p, g € C are both fixed points of T, then

lp = qll=1T(p) — T(g)ll < allp — 4ll,

and so ||p — ¢|| = 0 and the fixed point is unique.
In closing, we should point out that the contraction mapping lemma is the basis for several
iterative numerical methods familiar to undergraduates, e.g., Newton’s method. (For a good
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survey of methods from this point of view, see [2].) In these applications one uses the fact that if
X, is an arbitrary element of the set on which T is a contraction, then the sequence xg, x;, X5, ...
defined by x,,, = T(x,) converges geometrically to the fixed point. This property, which is a
by-product of the usual proof of the contraction mapping lemma, follows easily from

(@) AT(x)) < af(x).
If p is the fixed point, then

lx = pll < llx = T(x) I + IT(x) — T(p)Il < f(x) + allx = pll,
and so

1
l1-a

(i) Ix —pll < f(x).

Combining (i) and (ii) for the sequence { x,, } yields

an
”xn+1 _P” < 1 — af(xO)’

which shows that the convergence is at least geometric. Inequality (ii) gives a better estimate,
however, and shows that the function f gives a convenient test as to when the iteration should
stop. If one wishes x, to be within & of the fixed point, then the iteration should continue until

f(x,) <el — a).
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We define a trapezium as a convex quadrilateral with no parallel sides. Generally speaking a
trapezium is uniquely determined by five independent conditions. For example, a trapezium is
uniquely determined given the lengths of four consecutive sides and the fact that the sum of one
pair of opposite angles equals the sum of the other pair. This last condition is the most
well-known necessary and sufficient condition that a convex quadrilateral be inscribable in a
circle [1, pp. 74 and 88]. Many interesting relationships exist between the parts of an inscribed
quadrilateral. We shall have occasion to refer to Brahmagupta’s Theorem [2, p. 86]: If the sides of
an inscribed quadrilateral are of lengths a, b, ¢, and d and if the semi-perimeter is denoted by s, the
area of the quadrilateral is given by

A=[(s—a)(s—b)(s—c)s—d)]*.

On the other hand a trapezium is not uniquely determined given the lengths of four consecutive
sides and the fact that the sum of one pair of opposite sides equals the sum of the other pair. The
last condition is the most well-known necessary and sufficient condition that a quadrilateral be
circumscribable about a circle [1, p. 89]. There is usually an infinite number of such circles for
each given set of sides. However, if in addition to the lengths of the four consecutive sides and the
fact that the sums of the opposite pairs of sides are equal, we are given one of the segments on one
of the sides made by the point of tangency, then the quadrilateral is uniquely determined and
knowing one segment we know them all. If we let the segments made on side a by the point of
tangency of a particular inscribed circle be p and ¢ and the segments made on opposite side ¢ by



